Skip to main content
Log in

Biological nitrification inhibition by sorghum root exudates impacts ammonia-oxidizing bacteria but not ammonia-oxidizing archaea

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

Sorghum has a great capacity to release biological nitrification inhibitors (BNIs), but the inhibitory effect on nitrification and ammonia oxidizer populations under planted soil conditions is unclear. A pot experiment with three nitrogen (N) application rates (0, 50, and 200 mg N kg−1) was set up to detect the influence of sorghum growth on soil nitrification and investigate the function of blocking the activity of ammonia oxidizers. A 15N-labeled experiment was also conducted to detect the N form absorbed by sorghum. Sorghum root exudates were collected at 30 days after transplanting to hydroponic culture and added into cultured soil to determine the shifts in the populations of nitrifiers. The 15N labeling experiment showed that the uptake rate by sorghum of ammonium N fertilizer was 24% and that of nitrate N fertilizer was 9%, indicating that sorghum was an ammonium using plant. Compared with unplanted soil, sorghum planting had a significant inhibitory effect on the nitrification process even at the high-N fertilizer rates. Autotrophic nitrification was the prevailing process, and sorghum root exudation inhibited this process as much as dicyandiamide (DCD, 10 mg kg−1). Root exudates had a significant inhibitory effect on ammonia-oxidizing bacteria (AOB) but had no effect on ammonia-oxidizing archaea (AOA).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Berg P, Klemedtsson L, Rosswall T (1982) Inhibitory effect of low partial pressures of acetylene on nitrification. Soil Biol Biochem 14(3):301–303

    CAS  Google Scholar 

  • Castells E, Peñuelas J, Valentine DW (2004) Are phenolic compounds released from the Mediterranean shrub Cistus albidus responsible for changes in N cycling in siliceous and calcareous soils? New Phytol 162:187–195

    CAS  Google Scholar 

  • Coskun D, Britto DT, Shi WM, Kronzucker HJ (2017) Nitrogen transformations in modern agriculture and the role of biological nitrification inhibition. Nat Plants 3:17074. https://doi.org/10.1038/nplants.2017.74

    Article  CAS  PubMed  Google Scholar 

  • Daims H, Lebedeva EV, Pjevac P, Han P, Herbold C, Albertsen M, Jehmlich N, Palatinszky M, Vierheilig J, Bulaev A, Kirkegaard RH, von Bergen M, Rattei T, Bendinger B, Nielsen PH, Wagner M (2015) Complete nitrification by Nitrospira bacteria. Nature 528:504–509. https://doi.org/10.1038/nature16461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di HJ, Cameron KC, Shen JP, Winefield CS, O'Callaghan M, Bowatte S, He JZ (2009) Nitrification driven by bacteria and not archaea in nitrogen-rich grassland soils. Nat Geosci 2:621–624

    CAS  Google Scholar 

  • Di HJ, Cameron KC, Shen JP, Winefield CS, O'Callaghan M, Bowatte S, He JZ (2010) Ammonia-oxidizing bacteria and archaea grow under contrasting soil nitrogen conditions. FEMS Microbiol Ecol 72:386–394

    CAS  PubMed  Google Scholar 

  • Garrido F, Henault C, Gaillard H, Germon JC (2000) Inhibitory capacities of acetylene on nitrification in two agricultural soils. Soil Biol Biochem 32:1799–1802

    CAS  Google Scholar 

  • Gopalakrishnan S, Subbarao GV, Nakahara K, Yoshihashi T, Ito O, Maeda I, Ono H, Yoshida M (2007) Nitrification inhibitors from the root tissues of Brachiaria humidicola, a tropical grass. J Agric Food Chem 55:1385–1388

    CAS  PubMed  Google Scholar 

  • Gopalakrishnan S, Watanabe T, Pearse SJ, Ito O, Hossain ZAKM, Subbarao GV (2009) Biological nitrification inhibition by Brachiaria humidicola roots varies with soil type and inhibits nitrifying bacteria, but not other major soil microorganisms. Soil Sci Plant Nutr 55:725–733

    CAS  Google Scholar 

  • Jia ZJ, Conrad R (2009) Bacteria rather than Archaea dominate microbial ammonia oxidation in an agricultural soil. Environ Microbiol 11:1658–1671

    CAS  PubMed  Google Scholar 

  • Killham K (1990) Nitrification in coniferous forest soils. Plant Soil 128:31–44

    CAS  Google Scholar 

  • Kleineidam K, Kosmrlj K, Kublik S, Palmer I, Pfab H, Ruser R, Fiedler S, Schloter M (2011) Influence of the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) on ammonia-oxidizing bacteria and archaea in rhizosphere and bulk soil. Chemosphere 84:182–186

    CAS  PubMed  Google Scholar 

  • Kraus TEC, Zasoski RJ, Dahlgren RA, Horwath WR, Perston CM (2004) Carbon and nitrogen dynamics in a forest soil amended with purified tannins from different plant species. Soil Biol Biochem 36:309–321

    CAS  Google Scholar 

  • Leininger S, Urich T, Schloter M, Schwark L, Qi J, Nicol GW, Prosser JI, Schuster SC, Schleper C (2006) Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442:806–809

    CAS  PubMed  Google Scholar 

  • Li YY, Chapman SJ, Nicol GW, Yao HY (2018) Nitrification and nitrifiers in acidic soils. Soil Biol Biochem 116:290–301

    CAS  Google Scholar 

  • Li YY, Wang J, Pan FX, Chapman SJ, Yao HY (2016) Soil nitrogen availability alters rhizodeposition carbon flux into the soil microbial community. J Soils Sediments 16:1472–1480

    CAS  Google Scholar 

  • Minet EP, Ledgard SF, Lanigan GJ, Murphy JB, Grant J, Hennessy D, Lewis E, Forrestal P, Richards KG (2016) Mixing dicyandiamide (DCD) with supplementary feeds for cattle: an effective method to deliver a nitrification inhibitor in urine patches. Agric Ecosyst Environ 231:114–121

    CAS  Google Scholar 

  • Nardi P, Laanbroek HJ, Nicol GW, Renella G, Cardinale M, Pietramellara G, Weckwerth W, Trinchera A, Ghatak A, Nannipieri P (2020) Biological nitrification inhibition in the rhizosphere determining interactions and impact on microbioally mediated processes and potential applications. FEMS Microbiol Rev 37:1–35

    Google Scholar 

  • Nelson DW, Sommers LE (1982) Total carbon, organic carbon and organic matter. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis. Soil Science Society of America, Madison, pp 577–595

    Google Scholar 

  • Persson T, Wiren A (1995) Nitrogen mineralization and potential nitrification at different depths in acid forest soils. Plant Soil 168:55–65

    Google Scholar 

  • Powlson DS, Hirsch PR, Brookes PC (2001) The role of soil microorganisms in soil organic matter conservation in the tropics. Nutri Cycl Agroecosyst 61:41–51

    Google Scholar 

  • Prosser JI, Nicol GW (2008) Relative contributions of archaea and bacteria to aerobic ammonia oxidation in the environment. Environ Microbiol 10:2931–2941

    CAS  PubMed  Google Scholar 

  • Qiu HD, Sun DD, Gunatilake SR, She JY, Mlsna TE (2015) Analysis of trace dicyandiamide in stream water using solid phase extraction and liquid chromatography UV spectrometry. J Environ Sci 35:38–42

    CAS  Google Scholar 

  • Sahrawat KL, Keeney DR (1985) Perspectives for research on development of nitrification inhibitors. Commun Soil Sci Plant 16:517–524

    CAS  Google Scholar 

  • Sarr PS, Ando Y, Nakamura S, Deshpande S, Subbarao GV (2020) Sorgoleone release from sorghum roots shapes the composition of nitrifying populations, total bacteria, and archaea and determines the level of nitrification. Biol Fertil Soils 56(2):145–166

    Google Scholar 

  • Schlesinger WH (2009) On the fate of anthropogenic nitrogen. P Natl Acad Sci USA 106:203–208

    CAS  Google Scholar 

  • Subbarao GV, Ishikawa T, Ito O, Nakahara K, Wang HY, Berry WL (2006a) A biolumiuescence assay to detect nitrification inhibitors released from plant roots: a case study with Brachiaria humidicola. Plant Soil 288:101–112

    CAS  Google Scholar 

  • Subbarao GV, Ito O, Sahrawat KL, Berry WL, Nakahara K, Ishikawa T, Watanabe T, Suenaga K, Rondon M, Rao IM (2006b) Scope and strategies for regulation of nitrification in agricultural systems-challenges and opportunities. Crit Rev Plant Sci 25:303–335

    CAS  Google Scholar 

  • Subbarao GV, Nakahara K, Hurtado MP, Ono H, Moreta DE, Salcedo AF, Yoshihashi AT, Ishikawa T, Ishitani M, Ohnishi-Kameyama M, Yoshida M, Rondon M, Rao IM, Lascano CE, Berry WL, Ito O (2009) Evidence for biological nitrification inhibition in Brachiaria pastures. P Natl Acad Sci USA 106:17302–17307

    CAS  Google Scholar 

  • Subbarao GV, Nakahara K, Ishikawa T, Ono H, Yoshida M, Yoshihashi T, Zhu YY, Zakir HAKM, Deshpande SP, Hash CT, Sahrawat KL (2013a) Biological nitrification inhibition (BNI) activity in sorghum and its characterization. Plant Soil 366:243–259

    CAS  Google Scholar 

  • Subbarao GV, Nakahara K, Ishikawa T, Yoshihashi T, Ito O, Ono H, Ohnishi-Kameyama M, Yoshida M, Kawano N, Berry WL (2008) Free fatty acids from the pasture grass Brachiaria humidicola and one of their methyl esters as inhibitors of nitrification. Plant Soil 313:89–99

    CAS  Google Scholar 

  • Subbarao GV, Rondon M, Ito O, Ishikawa T, Rao IM, Nakahara K, Lascano C, Berry WL (2007a) Biological nitrification inhibition (BNI) - is it a widespread phenomenon? Plant Soil 294:5–18

    CAS  Google Scholar 

  • Subbarao GV, Sahrawat KL, Nakahara K, Rao IM, Ishitani M, Hash CT, Kishii M, Bonnett DG, Berry WL, Lata JC (2013b) A paradigm shift towards low-nitrifying production systems: the role of biological nitrification inhibition (BNI). Ann Bot-London 112:297–316

    CAS  Google Scholar 

  • Subbarao GV, Wang HY, Ito O, Nakahara K, Berry WL (2007b) NH4+ triggers the synthesis and release of biological nitrification inhibition compounds in Brachiaria humidicola roots. Plant Soil 290:245–257

    CAS  Google Scholar 

  • Sun HJ, Zhang HL, Powlson D, Min J, Shi WM (2015) Rice production, nitrous oxide emission and ammonia volatilization as impacted by the nitrification inhibitor 2-chloro-6-(trichloromethyl)-pyridine. Field Crop Res 173:1–7

    Google Scholar 

  • Sun L, Lu YF, Yu FW, Kronzucker HJ, Shi WM (2016) Biological nitrification inhibition by rice root exudates and its relationship with nitrogen-use efficiency. New Phytol 212:646–656

    CAS  PubMed  Google Scholar 

  • Takai K, Horikoshi K (2000) Rapid detection and quantification of members of the archaeal community by quantitative PCR using fluorogenic probes. Appl Environ Microbiol 66(11):5066–5072

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tesfamariam T, Yoshinaga H, Deshpande SP, Rao PS, Sahrawat KL, Ando Y, Nakahara K, Hash CT, Subbarao GV (2014) Biological nitrification inhibition in sorghum: the role of sorgoleone production. Plant Soil 379:325–335

    CAS  Google Scholar 

  • Uusitalo M, Kitunen V, Smolander A (2008) Response of C and N transformations in birch soil to coniferous resin volatiles. Soil Biol Biochem 40:2643–2649

    CAS  Google Scholar 

  • Vajrala N, Martens-Habbena W, Sayavedra-Soto LA, Schauer A, Bottomley PJ, Stahl DA, Arp DJ (2013) Hydroxylamine as an intermediate in ammonia oxidation by globally abundant marine archaea. P Natl Acad Sci USA 110:1006–1011

    CAS  Google Scholar 

  • Verhagen FJM, Laanbroek HJ (1991) Competition for ammonium between nitrifying and heterotrophic bacteria in dual energy-limited chemostats. Appl Environ Microbiol 57:3255–3263

    CAS  PubMed  PubMed Central  Google Scholar 

  • Walker CB, de la Torre JR, Klotz MG, Urakawa H, Pinel N, Arp DJ, Brochier-Armanet C, Chain PSG, Chan PP, Gollabgir A, Hempk J, Hügler M, Karr EA, Könneke M, Shin M, Lawton TJ, Lowe T, Martens-Habbena W, Sayavedra-Soto LA, Lang D, Sievert SM, Rosenzweig AC, Manning G, Stahl DA (2010) Nitrosopumilus maritimus genome reveals unique mechanisms for nitrification and autotrophy in globally distributed marine crenarchaea. P Nat Acad Sci USA 107(19):8818–8823

    CAS  Google Scholar 

  • Walter HM, Keeney DR, Fillery IR (1979) Inhibition of nitrification by acetylene. Soil Sci Soc Am J 43:195–196

    CAS  Google Scholar 

  • Xi RJ, Long XE, Huang S, Yao HY (2017) pH rather than nitrification and urease inhibitors determines the community of ammonia oxidizers in a vegetable soil. AMB Express 7:129. https://doi.org/10.1186/s13568-017-0426-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang JL, Zhu XF, Peng YX, Zheng C, Ming F, Zheng SJ (2011) Aluminum regulates oxalate secretion and plasma membrane H+-ATPase activity independently in tomato roots. Planta 234:281–291

    CAS  PubMed  Google Scholar 

  • Yao H, Gao Y, Nicol GW, Campbell CD, Prosser JI, Zhang L, Han W, Singh BK (2011) Links between ammonia oxidizer community structure, abundance, and nitrification potential in acidic soils. Appl Environ Microbiol 77:4618–4625. https://doi.org/10.1128/aem.00136-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zakir HAKM, Subbarao GV, Pearse SJ, Gopalakrishnan S, Ito O, Ishikawa T, Kawano N, Nakahara K, Yoshihashi T, Ono H, Yoshida M (2008) Detection, isolation and characterization of a root-exuded compound, methyl 3-(4-hydroxyphenyl) propionate, responsible for biological nitrification inhibition by sorghum (Sorghum bicolor). New Phytol 180:442–451

    CAS  PubMed  Google Scholar 

  • Zhang LM, Hu HW, Shen JP, He JZ (2012) Ammonia-oxidizing archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils. ISME J 6:1032–1045. https://doi.org/10.1038/ismej.2011.168

    Article  CAS  PubMed  Google Scholar 

  • Zhou JZ, Wu LY, Deng Y, Zhi XY, Jiang YH, Tu QC, Xie JP, Van Nostrand JD, He ZL, Yang YF (2011) Reproducibility and quantitation of amplicon sequencing-based detection. ISME J 5:1303–1313. https://doi.org/10.1038/ismej.2011.11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (41877051, 41525002, 41761134085) and the National Key R & D Program of China (2017YFD0200102).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huaiying Yao.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 257 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Zhang, Y., Chapman, S.J. et al. Biological nitrification inhibition by sorghum root exudates impacts ammonia-oxidizing bacteria but not ammonia-oxidizing archaea. Biol Fertil Soils 57, 399–407 (2021). https://doi.org/10.1007/s00374-020-01538-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-020-01538-w

Keywords

Navigation