Skip to main content
Log in

Sampling density and spatial analysis: a methodological pXRF study of the geochemistry of a Viking-Age house in Ribe, Denmark

  • Original Paper
  • Published:
Archaeological and Anthropological Sciences Aims and scope Submit manuscript

Abstract

This study explores the significance of spatial sampling resolution on portable X-ray fluorescence (pXRF) analysis of an archaeological settlement site with favorable preservation conditions and clearly defined stratigraphic contexts as a benchmark study to interpret geochemical mapping of anthropogenic elemental markers. We present geochemical elemental mapping of a Viking-Age house floor in Denmark based on an unprecedented sampling density of a 0.25-m grid. In order to establish a fast, cost-efficient, comparable approach of how different sizes of data resolution affect the spatial elemental patterns, the data is analysed using three different grid sizes: 0.25 m × 0.25 m, 0.5 m × 0.5 m, and 1.0 m × 1.0 m. We analysed each grid size with selected anthropogenic markers (CaO, Cu, P2O5, and Sr) using ordinary kriging. The CaO, P2O5, and Sr patterns display a strong inter-correlation between data points up to a distance of 1–1.5 m from one another. At the highest resolution (0.25-m grid), all of the elements display a high degree of detail in the variation of the elements across the indoor surface with low standard deviations. Hence, the precise position of hot and coldspots, and spread of bounded concentration zones, is easily recognized in the maps. With the low resolution (1.0-m grid), the borders between high and low concentrations become more blurred and the indications of smaller hotspots (possible activity areas) are completely lost. Especially, Cu displays a high degree of clustering, which the high-resolution sampling could best reveal. This benchmark study shows that it is realistic to perform large-scale geochemical surveys of archaeological settlements using pXRF spectrometry in a standard archaeological excavation context, but also that sampling distances of 0.5 m × 0.5 m or finer are best suited to in indoor contexts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding author.

References

  • Abrahams PW, Entwistle JA, Dodgshon RA (2010) The Ben Lawers historic landscape project: simultaneous multi-element analysis of former settlement and arable soils by X-ray fluorescence spectrometry. J Archaeol Method Theory 17:231–248. https://doi.org/10.1007/s10816-010-9086-8

    Article  Google Scholar 

  • Barrett JH, Hall A, Johnstone C, Kenward H, & O’Connor T, Ashby S (2007) Interpreting the plant and animal remains from Viking-age Kaupang. In D. Skre (Ed.), Kaupang in Skiringssal. Kaupang Excavation Project Publication Series (Vol. 1, pp. 283–319). Aarhus University Press, Aarhus.

  • Cannell RJS, Gustavsen L, Kristiansen M, Nau E (2018) Delineating an unmarked graveyard by high-resolution GPR and pXRF prospection: the Medieval Church Site of Furulund in Norway. Comput Appl Archaeol 1(1):1–18

    Google Scholar 

  • Cook SR, Clarke AS, Fulford MG (2005) Soil geochemistry and detection of early roman precious metal and copper alloy working at the roman town of Calleva Atrebatum (Silchester, Hampshire, UK). J Archaeol Sci 32(5):805–812

    Article  Google Scholar 

  • Cook SR, Clarke AS, Fulford MG, Voss J (2014) Characterising the use of urban space: a geochemical case study from Calleva Atrebatum (Silchester, Hampshire, UK) Insula IX during the late first/early second century AD. J Archaeol Sci 50(1):108–116. https://doi.org/10.1016/j.jas.2014.07.003

    Article  Google Scholar 

  • Crabtree PJ, Reilly E, Wouters B, Devos Y, Bellens T, Schryvers A (2017) Environmental evidence from early urban Antwerp: new data from archaeology, micromorphology, macrofauna and insect remains. Quat Int 460:108–123. https://doi.org/10.1016/j.quaint.2017.08.059

    Article  Google Scholar 

  • Croix S (2015) Permanency in early medieval emporia: reassessing Ribe. Eur J Archaeol 18(3):497–523. https://doi.org/10.1179/1461957114y.0000000078

    Article  Google Scholar 

  • Croix S, Deckers P, Feveile C, Knudsen M, Qvistgaard SS, Sindbæk SM, Wouters B (2019) Single context, metacontext, and high definition archaeology: integrating new standards of stratigraphic excavation and recording. J Archaeol Method Theory 26:1591–1631. https://doi.org/10.1007/s10816-019-09417-x

    Article  Google Scholar 

  • Dalsgaard K (2005) Fygesandsaflejringer ved Ribe. In C. Feveile (Ed.), Ribe Studier - Det ældste Ribe: Udgrvaninger på nrodsiden af Ribe Å 1984-2000 (1.1, pp. 93–105). Jsyk Arkæologisk Selskab/Den Antikvariske Samling.

  • Dore CD, Varela SLL (2010) Kaleidoscopes, palimpsests, and clay: realities and complexities in human activities and soil chemical/residue analysis. J Archaeol Method Theory 17(3):279–302. https://doi.org/10.1007/s10816-010-9092-x

    Article  Google Scholar 

  • Entwistle JA, McCaffrey KJW, Dodgshon RA (2007) Geostatistical and multi-elemental analysis of soils to interpret land-use history in the Hebrides, Scotland. Geoarchaeology 22(4):381–415. https://doi.org/10.1002/gea.20158

    Article  Google Scholar 

  • Esbensen KH, Guyot A, Westad F, Houmøller LP (2010) Multivariate data analysis: in practice: an introduction to multivariate data analysis and experimental design, 5th edn. Aalborg University

  • Feveile C (2006) Ribe on the north side of the river, 8th–12th century–—overview and Interpretation. In C. Feveile (Ed.), Ribe Studier. Det Ældste Ribe. Udgravninger på nordsiden af Ribe Å 1984–2000. Bind 1.1 (pp. 65–91). Jysk Arkæologisk Selskab.

  • Feveile C (2010) Landskabet; Ribe opstår 700-865. In S. B. Christiansen (Ed.), Ribe Bys Historie: 710-1520 (1st ed., pp. 20–38). Ribe, Dansk Center for Byhistorie.

  • Feveile C (2012) Ribe: Emporia and town in 8th–9th century. In S. Gelichi & R. Hodges (Eds.), From One Sea to Another. Trading Places in the European and Mediterranean Early Middle Ages. Proceedings of the International Conference Comacchio, 27–29 March 2009 (pp. 111–122). Brepols Publishers.

  • Feveile C, Jensen S (2000) Ribe in the 8th and 9th century: a contribution to the archaeological chronology of North Western Europe. Acta Archaeologica 71(1–2):9–24. https://doi.org/10.1034/j.1600-0390.2000.d01-2.x

    Article  Google Scholar 

  • Fleisher J, Sulas F (2015) Deciphering public spaces in urban contexts: geophysical survey, multi-element soil analysis, and artifact distributions at the 15th-16th-century AD Swahili settlement of Songo Mnara, Tanzania. J Archaeol Sci 55:55–70. https://doi.org/10.1016/j.jas.2014.12.020

    Article  Google Scholar 

  • Gé T, Courty M-A, Matthews W, Wattez J (1993) Sedimentary formation processes of occupation surfaces. In: Goldberg P, Nash DT, Petraglia MD (eds) Formation Processes in Archaeological Context. Prehistory Press, Madison (Wisconsin), pp 149–163

    Google Scholar 

  • Haslam R, Tibbett M (2004) Sampling and analyzing metals in soils for archaeological prospection: a critique. Geoarchaeology 19(8):731–751. https://doi.org/10.1002/gea.20022

    Article  Google Scholar 

  • Horák J, Janovský M, Hejcman M, Šmejda L, Klír T (2018) Soil geochemistry of medieval arable fields in Lovětín near Třešť, Czech Republic. Catena 162(April 2017):14–22. https://doi.org/10.1016/j.catena.2017.11.014

    Article  Google Scholar 

  • Jensen S (1991) Dankirke - Ribe. Fra handelsgård til handelsplads. In: Mortensen P, Rasmussen BM (eds) Fra stamme til stat i Danmark. 2: Høvdingesamfund og Kongemagt (pp. 73–87) Jysk Arkæologisk Selskab

    Google Scholar 

  • Kristiansen SM, Dalsgaard K (2000) Soil evolution in the remnants of natural forest vegetation: an example from an old oak-lime coppice forest in Denmark. Geografisk Tidsskrift 100:27–37

    Article  Google Scholar 

  • Linderholm J (2007) Soil chemical surveying: a path to a deeper understanding of prehistoric sites and societies in Sweden. Geoarchaeology 22(4):417–438. https://doi.org/10.1002/gea.20159

    Article  Google Scholar 

  • Lubos C, Dreibrodt S, Bahr A (2016) Analysing spatio-temporal patterns of archaeological soils and sediments by comparing pXRF and different ICP-OES extraction methods. J Archaeol Sci Rep 9:44–53. https://doi.org/10.1016/j.jasrep.2016.06.037

    Article  Google Scholar 

  • Macphail RI, Cruise GM, Allen MJ, Linderholm J, Reynolds P (2004) Archaeological soil and pollen analysis of experimental floor deposits; with special reference to Butser Ancient Farm, Hampshire, UK. J Archaeol Sci 31(2):175–191

    Article  Google Scholar 

  • Macphail RI, Bill J, Crowther J, Haită, ConstantinLinderholm J, Popovici D, Rødsrud CL (2016) European ancient settlements – a guide to their composition and morphology based on soil micromorphology and associated geoarchaeological techniques; introducing the contrasting sites of Chalcolithic Borduşani-Popină, Borcea River, Romania and Viking Age. Quat Int 460:30–47. https://doi.org/10.1016/j.quaint.2016.08.049

    Article  Google Scholar 

  • Mertz EL (1977) Ribe og omegns jordbundsforhold: En ingeniør-geologisk beskrivelsw (By-geologi). C.A. Reitzels Forlag.

    Google Scholar 

  • Mikołajczyk Ł, Milek K (2016) Geostatistical approach to spatial, multi-elemental dataset from an archaeological site in Vatnsfjörður, Iceland. J Archaeol Sci Rep 9:577–585. https://doi.org/10.1016/j.jasrep.2016.08.036

    Article  Google Scholar 

  • Milek KB (2012) Floor formation processes and the interpretation of site activity areas: an ethnoarchaeological study of turf buildings at Thverá, northeast Iceland. J Anthropol Archaeol 31(2):119–137. https://doi.org/10.1016/j.jaa.2011.11.001

    Article  Google Scholar 

  • Milek KB, Roberts HM (2013) Integrated geoarchaeological methods for the determination of site activity areas: a study of a Viking Age house in Reykjavik, Iceland. J Archaeol Sci 40(4):1845–1865. https://doi.org/10.1016/j.jas.2012.10.031

    Article  Google Scholar 

  • Milek K, French C (2007) Soils and sediments in the settlement and harbour at Kaupang. In: Skre D (ed) Kaupang in Skiringssal, Kaupang Excavation Project Publication Series. Aarhus University Press, Aarhus, pp 321–360

    Google Scholar 

  • Milek K, Zori D, Connors C, Baier W, Baker K, & Byock J (2014) Interpreting social space and social status in the Viking Age house at Hrísbrú using integrated geoarchaeological and microrefuse analyses. In D. Zori & J. Byock (Eds.), Viking Archaeology in Iceland: The Mosfell Archaeological Project (pp. 143–162). 10.1484/M.CURSOR-EB.1.102218

  • Nicolodelli G, Cabral J, Menegatti CR, Marangoni B, Senesi GS (2019) Recent advances and future trends in LIBS applications to agricultural materials and their food derivatives: An overview of developments in the last decade (2010–2019). Part I. Soils and fertilizers. TrAC - Trends Analyt Chem 115:70–82

    Article  Google Scholar 

  • Nielsen NH, Kristiansen SM, Ljungberg T, Enevold R, & Løvschal M (2019) Low and variable: manuring intensity in Danish Celtic fields. Journal of Archaeological Science: Reports, 27. https://doi.org/10.1016/j.jasrep.2019.101955

  • O’Rourke SM, Minasny B, Holden NM, McBratney AB (2016) Synergistic Use of Vis-NIR, MIR, and XRF Spectroscopy for the determination of soil geochemistry. Soil Sci Soc Am J 80(4):888–899. https://doi.org/10.2136/sssaj2015.10.0361

    Article  Google Scholar 

  • Oliver MA, Webster R (2014) A tutorial guide to geostatistics: computing and modelling variograms and kriging. Catena 113:56–69

    Article  Google Scholar 

  • Oonk S, Slomp CP, Huisman DJ, Vriend SP (2009) Effects of site lithology on geochemical signatures of human occupation in archaeological house plans in the Netherlands. J Archaeol Sci 36(6):1215–1228. https://doi.org/10.1016/j.jas.2009.01.010

    Article  Google Scholar 

  • Pebesma EJ (2004) Multivariable geostatistics in S: The gstat package. Comput Geosci 30(7):683–691. https://doi.org/10.1016/j.cageo.2004.03.012

    Article  Google Scholar 

  • Pebesma EJ (2014) gstat user ’ s manual. Retrieved from Gstat user’s manual 2.5.1 website: http://www.gstat.org/

  • Pedersen JB (1995) De danske Kalk- og Mergelselskaber: Kalk og mergel gennem tiderne. De Danske Kalk- Og Mergelselskaber, Viborg, 95.

  • Pîrnău RG, Patriche CV, Roşca B, Vasiliniuc I, Vornicu N, Stanc S (2020) Soil spatial patterns analysis at the ancient city of Ibida (Dobrogea, SE Romania), via portable X-ray fluorescence spectrometry and multivariate statistical methods. Catena 189(February):1–12. https://doi.org/10.1016/j.catena.2020.104506

    Article  Google Scholar 

  • Reimann C, Fabian K, Birke M, Filzmoser P, Demetriades A, Négrel P, Oorts K, Matschullat J, Caritat P, The GEMAS Project Team (2018) GEMAS: establishing geochemical background and threshold for 53 chemical elements in European agricultural soil. Appl Geochem 88:302–318

    Article  Google Scholar 

  • Rondelli B, Lancelotti C, Madella M, Pecci A, Balbo A, Pérez JR, Inserra F, Gadekar C, Ontiveros MAC, Ajithprasad P (2014) Anthropic activity markers and spatial variability: an ethnoarchaeological experiment in a domestic unit of Northern Gujarat (India). J Archaeol Sci 41:482–492. https://doi.org/10.1016/j.jas.2013.09.008

    Article  Google Scholar 

  • Save S, Kovacik J, Demarly-Cresp F, Issenmann R, Poirier S, Sedlbauer S, Teyssonneyre Y (2020) Large-scale geochemical survey by pXRF spectrometry of archaeological settlements and features: new perspectives on the method. Archaeol Prospect 27:1–16. https://doi.org/10.1002/arp.1773

    Article  Google Scholar 

  • Schjonning P, Christensen BT, Carstensen B (1994) Physical and chemical-properties of a sandy loam receiving animal manure, mineral fertilizer or no fertilizer for 90 years. Eur J Soil Sci 45(3):257–268

    Article  Google Scholar 

  • Sindbæk SM (2018) Northern Emporium: the archaeology of urban networks in Viking Age Ribe. In R. & S. S. Raja (Eds.), Urban Network Evolutions. Towards a high-definition archaeology (pp. 161–166). Aarhus, Aarhus University Press.

  • Skre Dagfinn. (2007). Kaupang in Skiringssal. Kaupang Excavation Project Publication Series (1. Norske). Aarhus University Press.

  • Šmejda L, Hejcman M, Horák J, Shai I (2018) Multi-element mapping of anthropogenically modified soils and sediments at the Bronze to Iron Ages site of Tel Burna in the southern Levant. Quat Int 483:111–123. https://doi.org/10.1016/j.quaint.2017.11.005

    Article  Google Scholar 

  • Smith H, Marshall P, Pearson MP (2001) Reconstructing house activity areas. In U. Albarella (Ed.), Environmental Archaeology: Meaning and Purpose (pp. 249–270). https://doi.org/10.1007/978-94-015-9652-7

  • Stockmann U, Cattle SR, Minasny B, McBratney AB (2016) Utilizing portable X-ray fluorescence spectrometry for in-field investigation of pedogenesis. Catena 139:220–231. https://doi.org/10.1016/j.catena.2016.01.007

    Article  Google Scholar 

  • Sulas F, Fleisher J, Wynne-Jones S (2017) Geoarchaeology of urban space in tropical island environments: Songo Mnara, Tanzania. J Archaeol Sci 77:52–63. https://doi.org/10.1016/j.jas.2016.06.002

    Article  Google Scholar 

  • Sulas F, Kristiansen SM, Wynne-Jones S (2019) Soil geochemistry, phytoliths and artefacts from an early Swahili daub house, Unguja Ukuu, Zanzibar. J Archaeol Sci 103(May 2018):32–45. https://doi.org/10.1016/j.jas.2019.01.010

    Article  Google Scholar 

  • Thompson AE, Meredith CR, Prufer KM (2018) Comparing geostatistical analyses for the identification of neighborhoods, districts, and social communities in archaeological contexts: a case study from two ancient Maya centers in southern Belize. J Archaeol Sci 97(June):1–13. https://doi.org/10.1016/j.jas.2018.06.012

    Article  Google Scholar 

  • Thomsen E, Andreasen R (2019) Agricultural lime disturbs natural strontium isotope variations: implications for provenance and migration studies. Sci Adv (3):5, eaav8083

  • Wadoux AMJ, Marchant BP, Lark RM (2019) Efficient sampling for geostatistical surveys. Eur J Soil Sci 70:975–989. https://doi.org/10.1111/ejss.12797

    Article  Google Scholar 

  • Webster R (2000) Is soil variation random? Geoderma 97:149–163. https://doi.org/10.1016/S0016-7061(00)00036-7

    Article  Google Scholar 

  • Webster R, Oliver MA (1990) Statistical methods in soil and land resource survey. Oxford University Pres

  • Wells EC, Novotny C, Hawken JR (2007) Predictive modeling of soil chemical data by ICP-OES reveals the uses of ancient Mesoamerican plazas. In: Glascock MD, Speakman RJ, Popelka-Filcoff RS (eds) Archaeological chemistry: Analytical techniques and archaeological interpretation. American Chemical Society, Washington, DC, pp 210–230

    Chapter  Google Scholar 

  • Wells EC (2010) Sampling design and inferential bias in archaeological soil chemistry. J Archaeol Method Theory 17:209–230. https://doi.org/10.1007/s10816-010-9087-7

    Article  Google Scholar 

  • Westh TC (1909) Eng og mose, mergel. In: Jacobsen A (ed) Hedebogen - korte populære bidrag om heden i fortiden, nutiden og fremtiden (pp. 72–79) København

    Google Scholar 

  • Wilson CA, Davidson DA, Cresser MS (2005) An evaluation of multielement analysis of historic soil contamination to differentiate space use and former function in and around abandoned farms. The Holocene 15(7):1094–1099. https://doi.org/10.1191/0959683605hl881rr

    Article  Google Scholar 

  • Wilson CA, Davidson DA, Cresser MS (2008) Multi-element soil analysis: an assessment of its potential as an aid to archaeological interpretation. J Archaeol Sci 35:412–424. https://doi.org/10.1016/j.jas.2007.04.006

    Article  Google Scholar 

  • Woodruff LG, Cannon WF, Eberl DD, Smith DB, Kilburn JE, Horton JD, Garrett RG, Klassen RA (2009) Continental-scale patterns in soil geochemistry and mineralogy: results from two transects across the United States and Canada. Appl Geochem 24(8):1369–1381. https://doi.org/10.1016/j.apgeochem.2009.04.009

    Article  Google Scholar 

  • Zhao C, Zhang Y, Wang CC, Hou M, Li A (2019) Recent progress in instrumental techniques for architectural heritage materials. Herit Sci 7(1):7–36

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the entire excavation team working on the Northern Emporium excavation project. Special thanks to Thomas Ljungberg for significant guidance and help with the geostatistical data processing in R, and to the students who assisted with laboratory work. We would also like to thank Dr. Karen Milek for discussion and inputs in the early stage of this study. Finally, thank you to three anonymous reviewers who provided helpful comments and suggestions.

Funding

The excavation and the Northern Emporium Project were funded by a Semper Ardens grant from the Carlsberg Foundation. This work was supported by the Danish National Research Foundation under the grant DNRF119 - Centre of Excellence for Urban Network Evolutions (UrbNet), and a postdoctoral research fellowship (12S7318N) of the Research Foundation Flanders – FWO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pernille L. K. Trant.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trant, P.L.K., Kristiansen, S.M., Christiansen, A.V. et al. Sampling density and spatial analysis: a methodological pXRF study of the geochemistry of a Viking-Age house in Ribe, Denmark. Archaeol Anthropol Sci 13, 21 (2021). https://doi.org/10.1007/s12520-020-01243-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12520-020-01243-7

Keywords

Navigation