Skip to main content
Log in

Rock art dating by 230Th/234U analysis: an appraisal of Chinese case studies

  • Original Paper
  • Published:
Archaeological and Anthropological Sciences Aims and scope Submit manuscript

Abstract

A reconsideration of the application of 230Th/234U analysis to thin accretionary skins of re-precipitated carbonate to secure minimum or maximum ages for physically related rock art suggests that the controversy it has created can be resolved. A program to test the method’s results indicates that such calcite skins tend to yield age estimates that are too high, particularly from Pleistocene samples. Although the controversy about such results has escalated in recent years, it had initially become apparent several decades ago. Here, two case studies of Chinese rock art, in Heilongjiang and Yunnan Provinces, are presented. Potential error sources accounting for the discrepancies are proposed. Some cautionary measures are presented to prevent the promotion of sensational but ultimately erroneous rock art age estimates deriving from this method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request. Data concerning Heilongjiang rock art are available from Tang et al. (2020).

References

  • Aubert M, Brumm A, Huntley J (2018) Early dates for ‘Neanderthal cave art’ may be wrong. J Hum Evol 125:215–217

    Google Scholar 

  • Bahn P, Pettitt P, Ripoll S (2003) Discovery of Palaeolithic cave art in Britain. Antiquity 77:227–231

    Google Scholar 

  • Bajo P, Hellstrom J, Frisia S, Drysdale R, Black J, Woodhead J, Borsato A, Zanchetta G, Wallace MW, Regattieri E, Haese R (2016) ‘Cryptic’ diagenesis and its implications for speleothem geochronologies. Quat Sc Rev 148:17–28

    Google Scholar 

  • Bard E, Hamelin B, Fairbanks RG, Zindler A (1990) Calibration of the 14C timescale over the past 30,000 years using mass spectrometric U–Th ages from Barbados corals. Nature 345:405–410

    Google Scholar 

  • Bednarik RG (1984) Die Bedeutung der paläolithischen Fingerlinientradition. Anthropologie 23:73–79

    Google Scholar 

  • Bednarik RG (1985) Parietal finger markings in Australia. Boll Centro Camuno Studi Preist 22:83–88

    Google Scholar 

  • Bednarik RG (1986a) Cave use by Australian Pleistocene man. Proc Univ Bristol Spelaeol Soc 17(3):227–245

    Google Scholar 

  • Bednarik RG (1986b) Parietal finger markings in Europe and Australia. Rock Art Res 3(1):30–61

    Google Scholar 

  • Bednarik RG (1996) Only time will tell: a review of the methodology of direct rock art dating. Archaeometry 38(1):1–13

    Google Scholar 

  • Bednarik RG (1997) Direct dating results from rock art: a global review. AURA Newsl 14(2):9–12

    Google Scholar 

  • Bednarik RG (1998) Direct dating results from Australian cave petroglyphs. Geoarchaeology 13:411–418

    Google Scholar 

  • Bednarik RG (1999) The speleothem medium of finger flutings and its isotopic geochemistry. Artefact 22:49–64

    Google Scholar 

  • Bednarik RG (2001) Rock art science: the scientific study of palaeoart. Brepols, Turnhout (1st edn; 2nd edn 2007, Aryan Books International, New Delhi)

  • Bednarik RG (2002) The dating of rock art: a critique. J Archaeol Sci 29(11):1213–1233

    Google Scholar 

  • Bednarik RG (2007) Antiquity and authorship of the Chauvet rock art. Rock Art Res 24(1):21–34

    Google Scholar 

  • Bednarik RG (2012) U–Th analysis and rock art: a response to Pike et al. Rock Art Res 29(2):244–246

    Google Scholar 

  • Bednarik RG (2017) Developing ICRAD. Rock Art Res 34(1):113–115

    Google Scholar 

  • Bednarik RG (2019) First Pleistocene rock art found in Central Europe. L’Anthropologie 124:102778. https://doi.org/10.1016/j.anthro.2020.102778

    Article  Google Scholar 

  • Capitan L, Peyrony D (1921) Les origines de l’art à l’Aurignacien moyen: La Ferrassie. Revue Archéol 31:92–112

    Google Scholar 

  • Cheng H, Lawrence Edwards R, Shen C-C, Polyak VJ, Asmerom Y, Woodhead JD, Hellstrom J, Wang Y, Kong X, Spötl C, Wang X, Alexander EC Jr (2013) Improvements in 230Th dating, 230Th and 234U half-life values, and U–Th isotopic measurements by multi-collector inductively coupled plasma mass spectrometry. Earth Planet Sci Lett 371–372:82–91

    Google Scholar 

  • Clottes J (2012) U-series dating, evolution and Neandertal. Int Newsl Rock Art 64:1–6

    Google Scholar 

  • Cole DR, Monger HC (1994) Influence of atmospheric CO2 on the decline of C4 plants during the last deglaciation. Nature 368:533–536

    Google Scholar 

  • Collado H, Sala N, Algaba M, Arsuaga JL, García JJ, Domínguez I, Nobre L, Rodríguez L, Torrado JM, Villalba M, González J, Domíngez Á, García E, Garrido E, Bea M, Angas J, Mas M (2016) A vueltas con las primeras manifestaciones de arte rupestre Paleolítico: los grabados de la Cueva de La Zarzamora (Perogordo, Segovia). In: Cuadernos De Arte Prehistórico 2:32–69, Centro de Arte Rupestre Moratalla

  • Donaldson M (2012) Kimberley rock art, volume one: Mitchell plateau area. Wildrocks Publications, Mount Lawley

    Google Scholar 

  • Dorale JA, Edwards RL, Alexander EC, Shen CC, Richards DA, Cheng H (2007) Uranium series dating of speleothems: current techniques, limits, & applications. In: Sasowsky ID, Mylroie J (eds) Studies of cave sediments: physical and chemical records of paleoclimate. Springer, Dordrecht, pp 177–198

    Google Scholar 

  • Drysdale RN, Zanchetta G, Hellstrom JC, Fallick AE, Zhao JX, Isola I, Bruschi G (2004) Palaeoclimatic implications of the growth history and stable isotope (δ18O and δ13C) geochemistry of a Middle to Late Pleistocene stalagmite from central-western Italy. Earth Planet Sci Lett 227:215–229

    Google Scholar 

  • Drysdale RN, Zanchetta G, Hellstrom JC, Fallick AE, Zhao JX (2005) Stalagmite evidence for the onset of the Last Interglacial in southern Europe at 129 ± 1 ka. Geophys Res Lett 32:L24708. https://doi.org/10.1029/2005GL024658

    Article  Google Scholar 

  • Drysdale RN, Zanchetta G, Hellstrom JC, Fallick AE, McDonald J, Cartwright I (2007) Stalagmite evidence for the precise timing of North Atlantic cold events during the early last glacial. Geology 35:77–80

    Google Scholar 

  • Drysdale RN, Paul BT, Hellstrom J, Couchoud I, Greig A, Bajo P, Zanchetta G, Isola I, Spötl C, Baneschi I, Regattieri E, Woodhead JD (2012) Precise microsampling of poorly laminated speleothems for U-series dating. Quat Geochronol 14:38–47

    Google Scholar 

  • Fontugne M, Shao Q, Frank N, Thil F, Guidon N, Boeda E (2013) Cross dating (Th/U-14C) of calcite covering prehistoric paintings at Serra da Capivara National Park, Piauí, Brazil. Radiocarbon 55(2–3):1191–1198

    Google Scholar 

  • Franke HW (1951a) Altersbestimmung an Sinter mit radioaktivem Kohlenstoff. Die Höhle 2:62–64

    Google Scholar 

  • Franke HW (1951b) Altersbestimmungen von Kalzitkonkretionen mit radioaktivem Kohlenstoff. Die Naturwissenschaften 38:527–531

    Google Scholar 

  • Franke HW (1967) Isotopenverhältnisse in sekundärem Kalk — geochronologische Aspekte. Atompraxis 13:1–11

    Google Scholar 

  • Franke HW, Geyh MA (1970) Isotopenphysikalische Analysenergebnisse von Kalksinter — Überblick zum Stand ihrer Deutbarkeit. Die Höhle 21:1–9

    Google Scholar 

  • Franke HW, Münnich KO, Vogel JC (1958) Auflösung und Abscheidung von Kalk — C14-Datierung von Kalkabscheidungen. Die Höhle 9:1–5

    Google Scholar 

  • Geyh MA (1969) Isotopenphysikalische Untersuchungen an Kalksinter, ihre Bedeutung für die 14C-Altersbestimmung von Grundwasser und der Erforschung des Paläoklimas. Geol Jahrb 88:149–158

    Google Scholar 

  • Hellstrom J (2003) Rapid and accurate U/Th dating using parallel ion-counting multi-collector ICP-MS. J Anal Atom Spectrom 18:1346–1351

    Google Scholar 

  • Hellstrom J (2006) U–Th dating of speleothems with high initial 230Th using stratigraphical constraint. Quat Geochronol 1:289–295

    Google Scholar 

  • Hendy CH (1969) The use of C-14 in the study of cave processes. In: Proceedings of the XIIth Nobel Symposium, Uppsala 1969, University of Uppsala, pp 419–443

  • Hoffmann DL, Spötl C, Mangini A (2009) Micromill and in situ laser ablation sampling techniques for high spatial resolution MC-ICPMS U–Th dating of carbonates. Chem Geol 259:253–261

    Google Scholar 

  • Hoffmann DL, Utrilla P, Bea M, Pike AWG, García-Diez M, Zilhão J, Domingo R (2016a) U-series dating of Palaeolithic rock art at Fuente del Trucho (Aragón, Spain). Quat Int 432:50–58

    Google Scholar 

  • Hoffmann DL, Pike AWG, García-Diez M, Pettitt PB (2016b) Methods for U-series dating of CaCO3 crusts associated with Palaeolithic cave art and application to Iberian sites. Quat Geochronol 36:104–116

    Google Scholar 

  • Hoffmann DL, Standish CD, García-Diez M, Pettitt PB, Milton JA, Zilhão J, Alcolea-González JJ, Cantalejo-Duarte P, Collado H, de Balbín R, Lorblanchet M, Ramos-Muñoz J, Weniger GC, Pike AWG (2018a) U–Th dating of carbonate crusts reveal Neanderthal origin of Iberian cave art. Science 359(6378):912–915

    Google Scholar 

  • Hoffmann DL, Standish CD, García-Diez M, Pettitt PB, Milton JA, Zilhão J, Alcolea-González JJ, Cantalejo-Duarte P, Collado H, de Balbín R, Lorblanchet M (2018b) Response to comment on ‘U-Th dating of carbonate crusts reveals Neandertal origin of Iberian cave art’. Science 362(6411):eaau1736

    Google Scholar 

  • Hoffmann DL, Standish CD, Pike AW, García-Diez M, Pettitt PB, Angelucci DE, Villaverde V, Zapata J, Milton JA, Alcolea-González J, Cantalejo-Duarte P, Collado H, de Balbín R, Lorblanchet M, Ramos-Muñoz J, Weniger GC, Zilhão J (2018c) Dates for Neanderthal art and symbolic behaviour are reliable. Nat Ecol Evol 2:1044–1045

    Google Scholar 

  • Holmgren K, Lauritzen S-E, Possnert G (1994) 230Th/234U and 14C dating of a late Pleistocene stalagmite in Lobatse II cave, Botswana. Quat Sci Rev 13:111–119

    Google Scholar 

  • Hongxia P, Wang L, Zhibang M, Hai C, Chenfeng Y, Edwards LR, Xing G, Wanbo H (2019) Precisely-dated Middle Pleistocene ivory engravings from the Xinglong Cave in South China. Natl Sci Rev (in press)

  • Jin A, Chao G (2020) The 2018 and 2019 rock art expeditions to Lianyungang, East China. Rock Art Res 37(1):74–81

    Google Scholar 

  • Labonne M, Hillaire-Marcel C, Ghaleb B, Goy JL (2002) Multi-isotopic age assessment of dirty speleothem calcite: an example from Altamira Cave, Spain. Quat Sci Rev 21:1099–1110

    Google Scholar 

  • Lachniet MS, Bernal JP, Asmerom Y, Polyal V (2012) Uranium loss and aragonite-calcite age discordance in a calcitized aragonite stalagmite. Quat Geochronol 14:26–37

    Google Scholar 

  • Li M, Shi L, Wu X, Tang H (2020) Discovery of new type of cave rock paintings in Guangxi Zhuang autonomous region, China. Rock Art Res 37(1):5–18

    Google Scholar 

  • Mancha Flores E (2011) Geología sedimentaria y lugares de ocupación prehistóricos de la cueva de maltravieso (Cáceres, España). PhD thesis, Universitat Rovira i Virgili

  • Obert JC, Scholz D, Lippold J, Felis T, Jochum KP, Meinrat OA (2018) Chemical separation and MC-ICPMS analysis of U, Th, Pa and Ra isotope ratios of carbonates. J Anal At Spectrom 33:1372–1383

    Google Scholar 

  • Pettitt P, Bahn P (2003) Current problems in dating Palaeolithic cave art: Candamo and Chauvet. Antiquity 77:134–141

    Google Scholar 

  • Pettitt PB, Bahn P, Züchner C (2009) The Chauvet conundrum: are claims for the ‘birthplace of art’ premature? In: Bahn P (ed) An enquiring mind: studies in honor of Alexander Marshack. Oxbow Books. Oxford and American School of Prehistoric Research Monograph Series, Cambridge, pp 239–262

    Google Scholar 

  • Peyrony D (1934) La Ferrassie. Préhistoire 3:1–92

    Google Scholar 

  • Pike AWG, Hoffmann DL, García-Diez M, Pettitt PB, Alcolea J, de Balbín R, González Sainz C, De Las HC, Lasheras J-A, Montes R, Zilhão J (2012) U-series dating of Paleolithic art in 11 caves in Spain. Science 336(6087):1409–1413

    Google Scholar 

  • Pike AWG, Hoffmann DL, Pettitt PB, García-Diez M, Zilhão J (2017) Dating Palaeolithic cave art: why U–Th is the way to go. Quat Int 432:41–49

    Google Scholar 

  • Plagnes V, Causse C, Fontugne M, Valladas H, Chazine J-M, Fage L-H (2003) Cross dating (Th/U-14C) of calcite covering prehistoric paintings in Borneo. Quat Res 60(2):172–179

    Google Scholar 

  • Pons-Branchu E, Bourrillon R, Conkey MW, Fontugne M, Fritz C, Gárate D, Quiles A, Rivero O, Sauvet G, Tosello G, Valladas H, White R (2014) Uranium-series dating of carbonate formations overlying Paleolithic art: interest and limitations. Bull Soc Préhist Française 111(2):211–224

    Google Scholar 

  • Pons-Branchu E, Sanchidrián JL, Fontugne M, Medina-Alcaide MA, Quiles A, Thiel F, Valladas H (2020) U-series dating at Nerja cave reveal open system. Questioning the Neanderthal origin of Spanish rock art. J Archaeol Sci 117:105–120

    Google Scholar 

  • Quiles A, Fritz C, Medina MA, Pons-Branchu E, Sanchidrián JL, Tosello G, Valladas H (2014) Chronologies croisées (C-14 et U/Th) pour l’étude de l’art préhistorique dans la grotte de Nerja: méthodologie. In: Medina-Alcaide MA, Romero Alonso A, Ruiz-Márquez RM, Sanchidrián Torti JL (eds) Sobre rocas y huesos: las sociedades prehistóricas y sus manifestaciones plásticas. Fundación Cueva de Nerja, Córdoba, pp 420–427

    Google Scholar 

  • Robinson JM (1994) Atmospheric CO2 and plants. Nature 368:105–106

    Google Scholar 

  • Rodríguez-Vidal J, d’Errico F, Pacheco FG, Blasco R, Rosell J, Jennings RP, Queffelec A, Finlayson G, Fa DA, Gutiérrez López JM, Carrión JS, Negro JJ, Finlayson S, Cáceres LM, Bernal MA, Fernández Jiménez S, Finlayson C (2014) A rock engraving made by Neanderthals in Gibraltar. Proc Natl Acad Sci U S A 111(37):13301–13306

    Google Scholar 

  • Sanchidrián JL, Valladas H, Medina-Alcaide MA, Pons-Branchu E, Quiles A (2017) New perspectives for 14C dating of parietal markings using CaCO3 thin layers: an example in Nerja Cave (Spain). J Archaeol Sci Rep 12:4–80

    Google Scholar 

  • Sauvet G, Bourrillon R, Conkey M, Fritz C, Garate-Maidagan D, Rivero Vila O, Tosello G, White R (2015) Answer to ‘comment on uranium-thorium dating method and Palaeolithic rock art’ by Pons-Branchu et al. Quat Int 432:86–92

    Google Scholar 

  • Taçon PSC, Aubert M, Gang L, Yang D, Liu H, May SK, Fallon S, Ji X, Curnoe D, Herries AIR (2012) Uranium-series age estimates for rock art in Southwest China. J Archaeol Sci 39:492–499

    Google Scholar 

  • Tang H, Kumar G, Jin A, Bednarik RG (2020) Rock art of Heilongjiang Province, China. J Archaeol Sci Rep 31:102348. https://doi.org/10.1016/j.jasrep.2020.102348

    Article  Google Scholar 

  • Trezise P, Wright R (1966) The durability of rock-paintings on Dunk Island, northern Queensland. Mankind 6(7):320–324

    Google Scholar 

  • Valladas H, Pons-Branchu E, Dumoulin JP, Quiles A, Sanchidrián JL, Medina-Alcaide MA (2017) U/Th and 14C crossdating of parietal calcite deposits: application to Nerja Cave (Andalusia, Spain) and future perspectives. Radiocarbon 59:1955–1967

    Google Scholar 

  • White R, Bosinski G, Bourrillon R, Clottes J, Conkey MW, Corchón Rodriguez S et al (2020) Still no archaeological evidence that Neanderthals created Iberian cave art. J Human Evol 144:102640

    Google Scholar 

  • Wilson R (2018) The ‘Ice Age art of Britain’ examined. Rock Art Res 35(1):98–102

    Google Scholar 

Download references

Acknowledgements

We thank the Propaganda Department of Daxinganling Prefectural Committee of Heilongjiang for initiating and supporting this project and Dr. John Hellstrom at Melbourne University for analytical work crucial to this project. This paper describes one of the research achievements of the Chinese National Social Science Foundation project ‘Scientific and technological dating of rock art in the Upper Palaeolithic of the Jinsha River’ (Grant No. 18BKG004).

Funding

Tang Huisheng has received funding from the Chinese National Social Science Foundation project ‘Scientific and technological dating of rock art in the Upper Palaeolithic of the Jinsha River’ (Grant No. 18BKG004). No other funding has been received.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert G. Bednarik.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huisheng, T., Bednarik, R.G. Rock art dating by 230Th/234U analysis: an appraisal of Chinese case studies. Archaeol Anthropol Sci 13, 19 (2021). https://doi.org/10.1007/s12520-020-01266-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12520-020-01266-0

Keywords

Navigation