Skip to main content

Advertisement

Log in

Bioengineering Approaches for Placental Research

  • Bioengineering for Women’s Health
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Research into the human placenta’s complex functioning is complicated by a lack of suitable physiological in vivo models. Two complementary approaches have emerged recently to address these gaps in understanding, computational in silico techniques, including multi-scale modeling of placental blood flow and oxygen transport, and cellular in vitro approaches, including organoids, tissue engineering, and organ-on-a-chip models. Following a brief introduction to the placenta’s structure and function and its influence on the substantial clinical problem of preterm birth, these different bioengineering approaches are reviewed. The cellular techniques allow for investigation of early first-trimester implantation and placental development, including critical biological processes such as trophoblast invasion and trophoblast fusion, that are otherwise very difficult to study. Similarly, computational models of the placenta and the pregnant pelvis at later-term gestation allow for investigations relevant to complications that occur when the placenta has fully developed. To fully understand clinical conditions associated with the placenta, including those with roots in early processes but that only manifest clinically at full-term, a holistic approach to the study of this fascinating, temporary but critical organ is required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Abbas, Y., A. Carnicer-Lombarte, L. Gardner, J. Thomas, J. J. Brosens, A. Moffett, A. M. Sharkey, K. Franze, G. J. Burton, and M. L. Oyen. Tissue stiffness at the human maternal-fetal interface. Hum. Reprod. 34:1999–2008, 2019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Abbas, Y., C. M. Oefner, W. J. Polacheck, L. Gardner, L. Farrell, A. Sharkey, R. Kamm, A. Moffett, and M. L. Oyen. A microfluidic assay to study invasion of human placental trophoblast cells. J. R. Soc. Interface 14:20170131, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Abbas, Y., M. Y. Turco, G. J. Burton, and A. Moffett. Investigation of human trophoblast invasion in vitro. Hum. Reprod. Update. 26:501–513, 2020.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Abbas, Y., L. G. Brunel, M. S. Hollinshead, R. C. Fernando, L. Gardner, I. Duncan, A. Moffett, S. Best, M. Y. Turco, G. J. Burton, and R. E. Cameron. Generation of a three-dimensional collagen scaffold-based model of the human endometrium. Interface Focus. 10:20190079, 2020.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Acharya, G., J. Aplin, P. Brownbill, J. Bulmer, G. Burton, L. Chamley, I. Chernyavsky, A. Clark, S. Collins, E. Cottrell, M. Dilworth, D. Elad, M. Filoche, N. Hannan, A. E. P. Heazell, O. Jensen, E. D. Johnstone, L. Leach, R. Lewis, T. Morgan, J. Myers, G. Nye, M. Oyen, C. Salafia, H. Schneider, and P. O’Tierney-Ginn. IFPA meeting 2017 workshop report: Clinical placentology, 3D structure-based modeling of placental function, placental bed, and treating placental dysfunction. Placenta 64(Supp. 1):S4–S8, 2018.

    Article  PubMed  Google Scholar 

  6. Acar, B. S., M. Meric, and V. Esat. Hybrid foetus with an FE head for a pregnant occupant model for vehicle safety investigations. Int. J. Crashworthiness 23:540–548, 2018.

    Article  Google Scholar 

  7. Alzamil, L., K. Nikolakopoulou, and M. Y. Turco. Organoid systems to study the human female reproductive tract and pregnancy. Cell Death Differ. 2020. https://doi.org/10.1038/s41418-020-0565-5.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Arumugasaamy, N., K. D. Rock, C.-Y. Kuo, T. L. Bale, and J. P. Fisher. Microphysiological systems of the placental barrier. Adv. Drug Deliv. Rev. 2020. https://doi.org/10.1016/j.addr.2020.08.010.

    Article  PubMed  Google Scholar 

  9. Auriault, F., L. Thollon, J. Peres, and M. Behr. Adverse fetal outcome in road accidents: Injury mechanism study and injury criteria development in a pregnant woman finite element model. Accid. Anal. Prev. 97:96–102, 2016.

    Article  CAS  PubMed  Google Scholar 

  10. Ban, Z., F. Knoespel, and M. R. Schneider. Shedding light into the black box: advances in in vitro systems for studying implantation. Dev. Biol. 463:1–10, 2020.

    Article  CAS  PubMed  Google Scholar 

  11. Bappoo, N., L. J. Kelsey, L. Parker, T. Crough, C. M. Moran, A. Thomson, M. C. Holmes, C. S. Wyrwoll, and B. J. Doyle. Viscosity and haemodynamics in a late gestation rat feta-placental arterial network. Biomech. Model. Mechanobiol. 16:1361–1372, 2017.

    Article  PubMed  Google Scholar 

  12. Bartels, H.C., J. D. Postle, P. Downey, and D. J. Brennan. Placenta accrete spectrum: A review of pathology, molecular biology, and biomarkers. Disease Markers. 1507674, 2018. https://doi.org/10.1155/2018/1507674.

  13. Belfort, M. A. Indicated preterm birth for placenta accrete. Semin. Perinatol. 35:252–256, 2011.

    Article  PubMed  Google Scholar 

  14. Berendsen, J. T. W., S. A. Kruit, N. Atak, E. Willink, and L. I. Segerink. Flow-free microfluidic device for quantifying chemotaxis in spermatozoa. Anal. Chem. 92:3302–3306, 2020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bell, AW, W. W. Hay, and R. A. Ehrhardt. Placental transport of nutrients and its implications for fetal growth. J Reprod Fertil Suppl. 54:401-410, 1999.

  16. Brosens, I., R. Pijnenborg, L. Vercruysse, and R. Romero. The “Great Obstetrical Syndromes” are associated with disorders of deep placentation. Am. J. Obstet. Gynecol. 204:193–201, 2011.

    Article  PubMed  Google Scholar 

  17. Bublitz, M. H., M. Carpenter, and G. Bourjeily. Preterm birth disparities between states in the United States: an opportunity for public health interventions. J. Psychosom. Obstet. Gynecol. 41:38–46, 2020.

    Article  Google Scholar 

  18. Campagnolo, L., V. Lacconi, M. Massimiani, A. Magrini, and A. Pietroiusti. In vitro experimental models to study the efficiency of the placental barrier for environmental toxicants: tumor cell lines versus trophoblast primary cells. Biomed. Prev. Issues. 1:157, 2018.

    Google Scholar 

  19. Carter, A. M. Evolution of factors affecting placental oxygen transfer. Placenta 30:19–25, 2009.

    Article  CAS  Google Scholar 

  20. Chernyavsky, I. L., O. E. Jensen, and L. Leach. A mathematical model of intervillous blood flow in the human placentome. Placenta 31:44–52, 2010.

    Article  CAS  PubMed  Google Scholar 

  21. Chua, W., and M. L. Oyen. Do we know the strength of the chorioamnion? A critical review and analysis. Eur. J. Obstet. Gynecol. Reprod. Biol. 144(Supp. 1):128–133, 2009.

    Article  Google Scholar 

  22. Clark, A. R., M. Lin, M. Tawhai, R. Saghian, and J. L. James. Multi-scale modelling of the feto-placental vasculature. Interface Focus. 5:20140078, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Clark, A. R., T. C. Lee, and J. L. James. Computational modeling of the interactions between the maternal and fetal circulations in human pregnancy. WIREs Syst. Biol. Med. 2020. https://doi.org/10.1002/wsbm.1502.

    Article  Google Scholar 

  24. Claure, I., D. Anderson, C. M. Klapperich, W. Kuohung, and J. Y. Wong. Biomaterials and contraception: promises and pitfalls. Ann. Biomed. Eng. 48:2113–2131, 2020.

    Article  PubMed  Google Scholar 

  25. Connolly, A. M., V. L. Katz, K. L. Bash, M. J. McMahon, and W. F. Hansen. Trauma and pregnancy. Am. J. Perinatology. 14:331–336, 1997.

    Article  CAS  Google Scholar 

  26. Convery, N., and N. Gadegaard. 30 years of microfluidics. Micro Nano Eng. 2:76–91, 2019.

    Article  Google Scholar 

  27. Cui, Y., H. Zhao, S. We, and X. Li. Human female reproductive system organoids: applications in developmental biology, disease modeling, and drug discovery. Stem Cell. Rev. Rep. 2020. https://doi.org/10.1007/s12015-020-10039-0.

    Article  PubMed  Google Scholar 

  28. Culhane, J. F., and R. L. Goldenberg. Racial disparities in preterm birth. Semin. Perinatol. 35:234–239, 2011.

    Article  PubMed  Google Scholar 

  29. Delotte, J., M. Behr, L. Thollon, A. Bongain, and C. Brunet. Does placenta position modify the risk of placental abruption in car crashes? Comp. Methods Biomech. Biomed. Eng. 12:399–405, 2009.

    Article  Google Scholar 

  30. DellSchaft, N. S., G. Hutchinson, S. Shah, N. W. Jones, C. Bradley, L. Leach, C. Platt, R. Bowtell, and P. A. Gowland. The haemodynamics of the human placenta in utero. PLoS Biol. 18:e3000676, 2020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. DiGregorio, S. Early: An intimate history of premature birth and what it teaches us about being human. New York: HarperCollins Publishers, 2020.

    Google Scholar 

  32. Ding, H., N. P. Illsley, and R. C. Chang. 3D bioprinted GelMA based models for the study of trophoblast cell invasion. Sci. Rep. 9:18854, 2019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Duncan, J. M. On a lower limit to the power exerted in the function of parturition, trans. R. Soc. Edinb. 24:639–651, 1867.

    Article  Google Scholar 

  34. Dunn, P. M. Leonardo Da Vinci (1452–1519) and reproductive anatomy. Arch. Dis. Child. 77:F249–F251, 1997.

    Article  CAS  Google Scholar 

  35. Dunn, P. M. John Whitridge Williams MD (1866-1931) of Baltimore: pioneer of academic obstetrics. Arch. Dis. Child. Fetal Neonatal Ed. 92:F74–F77, 2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Erlich, A., P. Pearce, R. P. Mayo, O. E. Jensen, and I. L. Chernyavsky. Physical and geometric determinants of transport in fetoplacental microvascular networks. Sci. Adv. 5:eaav6326, 2019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Erlich A, G.A. Nye, P. Brownbill, O.E. Jensen, I.L. Chernyavsky, Quantifying the impact of tissue metabolism on solute transport in feto-placental microvascular networks, Interface Focus 9: 20190021, 2019, https://doi.org/10.1098/rsfs.2019.0021

  38. Frey, H. A., and M. A. Klebanoff. The epidemiology, etiology, and costs of preterm birth. Semin. Fetal Neonatal Med. 21:68–73, 2016.

    Article  PubMed  Google Scholar 

  39. Gargus, E. S., H. B. Rogers, K. E. McKinnon, M. E. Edmonds, and T. K. Woodruff. Engineered reproductive tissues. Nature. Biomed. Eng. 4:381–393, 2020.

    Google Scholar 

  40. Guttmacher, A. E., Y. T. Maddox, and C. Y. Spong. The Human Placenta Project: Placental structure, development, and function in real time. Placenta 35:303–304, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Haider, S., G. Meinhardt, L. Saleh, V. Kunihs, M. Gamperl, U. Kaindl, A. Ellinger, T. R. Burkard, C. Fiala, J. Pollheimer, S. Mendjan, P. A. Latos, and M. Knöfler. Self-renewing trophoblast organoids recapitulate the developmental program of the Early Human Placenta. Stem Cell Rep. 11:537–551, 2018.

    Article  CAS  Google Scholar 

  42. Han, Q., and Y. Du. Advances in the application of biomimetic endometrium interfaces for uterine bioengineering in female infertility. Front. Bioeng. Biotechnol. 8:153, 2020.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Hill, C. C., and J. Pickinpaugh. Trauma and surgical emergencies in the obstetric patient. Surg. Clin. N Am. 88:421–440, 2008.

    Article  PubMed  Google Scholar 

  44. Holloway, E. M., M. M. Capeling, and J. R. Spence. Biologically inspired approaches to enhance human organoid complexity. Development 146:dev166173, 2019. https://doi.org/10.1242/dev.166173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Huang, Y., B. Agrawal, D. Sun, J. S. Kuo, and J. C. Williams. Microfluidics-based devices: New tools for studying cancer and cancer stem cell migration. Biomicrofluidics 5:13412, 2011.

    Article  PubMed  CAS  Google Scholar 

  46. Hughes, C. S., L. M. Postovit, and G. A. Lajoie. Matrigel: a complex protein mixture required for optimal growth of cell culture. Proteomics 10:1886–1890, 2010.

    Article  CAS  PubMed  Google Scholar 

  47. Jensen, O. E., and I. L. Chernyavsky. Blood flow and transport in the human placenta. Ann Rev Fluid Mech. 51:25–47, 2019.

    Article  Google Scholar 

  48. Jiao, L., E. Ghorani, N. J. Sebire, and M. J. Seckl. Intraplacental choriocarcinoma: systematic review and management guidance. Gynecol. Oncol. 141:624–631, 2016.

    Article  CAS  PubMed  Google Scholar 

  49. Kato, Y., G. J. Burton, and M. L. Oyen. Villous tree model with active contractions for estimating blood flow conditions in the human placenta. Open Biomed. Eng. J. 11:36–48, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Kaufmann, P., S. Black, and B. Huppertz. Endovascular trophoblast invasion: implications for the pathogenesis of intrauterine growth retardation and pre-eclampsia. Biol. Reprod. 69:1–7, 2003.

    Article  CAS  PubMed  Google Scholar 

  51. Kreuder, A.-E., A. Bolanos-Rosales, C. Palmer, A. Thomas, M.-A. Geiger, T. Lam, A.-K. Amler, U. R. Markert, R. Lauster, and L. Kloke. Inspired by the human placenta: a novel 3D bioprinted membrane system to create barrier models. Scientific Reports. 10:15606, 2020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kuo, C.-Y., A. Eranki, J. K. Placone, K. R. Rhodes, H. Aranda-Espinoza, R. Fernandes, J. P. Fisher, and P. C. W. Kim. Development of a 3D printed, bioengineered placenta model to evaluate the role of trophoblast migration in pre-eclampsia. ACS Biomaterials Sci. Eng. 2:1817–1826, 2016.

    Article  CAS  Google Scholar 

  53. Kuo, C.-Y., T. Guo, J. Cabrera-Luque, N. Aramugasaamy, L. Bracaglia, A. Garcia-Vivas, M. Santoro, H. Baker, J. Fisher, and P. Kim. Placental basement membrane proteins are required for effective cytotrophoblast invasion in a 3D bioprinted placenta model. J. Biomed. Mater. Res. A. 106:1476–1487, 2018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lecarpentier, E., M. Bhatt, G. I. Bertin, B. Deloison, L. J. Salomon, P. Deloron, T. Fournier, A. I. Barakat, and V. Tsatsaris. Computational fluid dynamics simulations of maternal circulation: wall shear stress in the human placenta and its biological implications. PLoS ONE 11:e0147262, 2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lee, J. S., R. Romero, Y. M. Han, H. C. Kim, C. J. Kim, J.-S. Hong, and D. Huh. Placenta-on-a-chip: a novel platform to study the biology of the human placenta. J. Matern Fetal Neonatal Med. 29:1046–1054, 2016.

    Article  CAS  PubMed  Google Scholar 

  56. Lewis, R. M., J. K. Cleal, and B. G. Sengers. Placental Perfusion and mathematical modelling. Placenta 93:43–48, 2020.

    Article  CAS  PubMed  Google Scholar 

  57. Liu, J., B. Mosavati, A. V. Oleinikov, and E. Du. Biosensors for detection of human placental pathologies: a review of emerging technologies and current trends. Translat. Res. 213:23–49, 2019.

    Article  CAS  Google Scholar 

  58. Ma, T., S.-T. Yang, and D. A. Kniss. Development of an in vitro human placenta model by the cultivation of human trophoblasts in a fiber-based bioreactor system. Tissue Eng. 5:91–102, 1999.

    Article  CAS  PubMed  Google Scholar 

  59. Ma, Z., L. Sagrillo-Fagundes, R. Tran, P. K. Parameshwar, N. Kalashnikov, C. Vaillancourt, and C. Moraes. Biomimetic micropatterned adhesive surfaces to mechanobiologically regulate placental trophoblast fusion. ACS Appl. Mater. Interfaces 2020. https://doi.org/10.1021/acsami.9b.19906.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Malhotra, A., B. J. Allison, M. Castillo-Melendez, G. Jenkin, G. R. Polglase, and S. I. Miller. Neonatal morbidities of fetal growth restriction: pathophysiology and impact. Front. Endocrinol. 10:00055, 2019.

    Article  Google Scholar 

  61. Mandt, D., P. Gruber, M. Markovic, M. Tromayer, M. Rothbauer, S. R. A. Krayz, F. Ali, J. V. Hoorick, W. Holnthoner, S. Mühleder, P. Dubruel, S. V. Vlierberghe, P. Ertl, R. Liska, and A. Ovsianikov. Fabrication of biomimetic placental barrier structures within a microfluidic device utilizing two-photon polymerization. Int. J. Bioprint. 4:144, 2018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Marti-Figueroa, C. R., and R. S. Ashton. The case for applying tissue engineering methodologies to instruct human organoid morphogenesis. Acta Biomater. 54:35–44, 2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Mayhew, T. M. Estimating oxygen diffusive conductances of gas-exchange systems: a stereological approach illustrated with the human placenta. Ann. Anatomy 196:34–40, 2014.

    Article  Google Scholar 

  64. Mirbod, P. Analytical model of the feta-placental vascular system: consideration of placental oxygen transport. R. Soc. Open Sci. 5:180219, 2018.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Moffett, A., and C. Loke. Immunology of placentation in eutherian mammals. Nat. Rev. Immunol. 6:584–594, 2006.

    Article  CAS  PubMed  Google Scholar 

  66. Nardozza, L. M., A. C. Caetano, A. C. Zamarian, J. B. Mazzola, C. P. Silva, V. M. Marcal, T. F. Lobo, A. B. Peixoto, and E. Araujo Junior. Fetal growth restriction: current knowledge. Arch Gynecol Obstet. 295:1061–1077, 2017.

    Article  PubMed  Google Scholar 

  67. Oefner, C. M., A. Sharkey, L. Gardner, H. Critchley, M. L. Oyen, and A. Moffett. Collagen type IV at the fetal-maternal interface. Placenta 36:59–68, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Parizi, M. I., M. T. Ahmadian, and H. Mohammadi. Rigid-bar loading on pregnant uterus and development of pregnant abdominal response corridor based on finite element biomechanical model. Int. J Num. Methods Biomed. Eng. 36:e3284, 2020.

    Google Scholar 

  69. Pemathilaka, R. L., D. E. Reynolds, and N. N. Hashemi. Drug transport across the human placenta: review of placenta-on-a-chip and previous approaches. Interface Focus. 9:20190031, 2019.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Pemathilaka, R. L., J. D. Caplin, S. S. Aykar, R. Montazami, and N. N. Hashemi. Placenta-on-a-chip: in vitro study of caffeine transport across placental barrier using liquid chromatography mass spectrometry. Glob. Chall. 3:1800112, 2019.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Plitman Mayo, R., D. S. Charnock-Jones, G. J. Burton, and M. L. Oyen. Three-dimensional modeling of human placental villi. Placenta. 43:54–60, 2016.

    Article  PubMed  Google Scholar 

  72. Plitman Mayo, R., J. Olsthoorn, D. S. Charnock-Jones, G. J. Burton, and M. L. Oyen. Computational modeling of the structure-function relationship in human placental terminal villi. J. Biomech. 49:3780–3787, 2016.

    Article  CAS  PubMed  Google Scholar 

  73. Plitman Mayo, R. Advances in human placental biomechanics. Comput. Struct. Biol. J. 16:298–306, 2018.

    CAS  Google Scholar 

  74. Plitman Mayo, R., Y. Abbas, D. S. Chanock-Jones, G. J. Burton, and G. Marom. Three-dimensional morphological analysis of placental terminal villi. Interface Focus. 9:20190037, 2019.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Quinn, J.-A., F. M. Munoz, B. Gonik, L. Frau, C. Cutland, T. Mallett-Moore, A. Kissou, F. Wittke, M. Das, T. Nunes, S. Pye, W. Watson, A.-M. A. Ramos, J. F. Cordero, W.-T. Huang, S. Kochhar, J. Buttery, Brighton Collaboration Preterm Birth Working Group. Preterm birth: case definition & guidelines for data collection, analysis, and presentation of immunisation safety data. Vaccine. 34:6047–6056, 2016.

  76. Rameshbabu, A. P., P. Ghosh, E. Subramani, K. Bankoti, K. Kapat, S. Datta, P. P. Maity, B. Subramanian, S. Roy, K. Chaudhury, and S. Dhara. Investigating the potential of human placenta-derived extracellular matrix sponges coupled with amniotic membrane-derived stem cells for osteochondral tissue engineering. J. Mater. Chem. B 4:613–625, 2016.

    Article  CAS  PubMed  Google Scholar 

  77. Rana, S., E. Lemoine, J. P. Granger, and S. A. Karumanchi. Pre-eclampsia: pathophysiology, challenges, and perspectives. Circ. Res. 124:1094–1112, 2019.

    Article  CAS  PubMed  Google Scholar 

  78. Richardson, L., S. Jeong, S. Kim, A. Han, and R. Menon. Amnion membrane organ-on-chip: an innovative approach to study cellular interactions. FASEB J. 33:8945–8960, 2019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Richardson, L., S. Kim, R. Menon, and A. Han. Organ-on-chip technology: the future of feto-maternal interface research? Front. Physiol. 11:715, 2020.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Rossi, G., A. Manfrin, and M. P. Lutolf. Progress and potential in organoid research. Nat. Rev. Genet. 19:671–687, 2018.

    Article  CAS  PubMed  Google Scholar 

  81. Sackmann, E. K., A. L. Fulton, and D. J. Beebe. The present and future role of microfluidics in biomedical research. Nature 507:181–189, 2014.

    Article  CAS  PubMed  Google Scholar 

  82. Sakamoto, J., C. Michels, B. Eisfelder, and N. Joshi. Trauma in pregnancy. Emerg. Med. Clin. North Am. 37:317–338, 2019.

    Article  PubMed  Google Scholar 

  83. Serov, A. S., C. Salafia, P. Brownbill, D. S. Grebenkov, and M. Filoche. Optimal villi density for maximal oxygen uptake in the human placenta. J. Theor. Biol. 368:133–144, 2015.

    Article  CAS  PubMed  Google Scholar 

  84. Serov, A. S., C. Salafia, D. S. Grebenkov, and M. Filoche. The role of morphology in mathematical models of placental gas exchange. J. Appl. Physiol. 120:17–28, 2016.

    Article  CAS  PubMed  Google Scholar 

  85. Shin, Y., S. Han, J. S. Jeon, K. Yamamoto, I. K. Zervantonakis, R. Sudo, R. D. Kamm, and S. Chung. Microfluidic assay for simultaneous culture of multiple cell types on surfaces or within hydrogels. Nat. Protoc. 7:1247–1259, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Sun, C., K. M. Groom, C. Oyston, L. W. Charley, A. R. Clark, and J. L. James. The placenta in fetal growth restriction: what is going wrong? Placenta 96:10–18, 2020.

    Article  PubMed  Google Scholar 

  87. Tikkanen, M. Placental abruption: epidemiology, risk factors, and consequences. Acta Obstet. Gynecol. Scand. 90:140–149, 2011.

    Article  PubMed  Google Scholar 

  88. Truskey, G. A. Human microphysiological systems and organoids as in vitro models for toxicological studies. Front Public Health. 6:185, 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Tun, W. M., C. H. Yap, S. N. Saw, J. L. James, and A. R. Clark. Differences in placental capillary shear stress in fetal growth restriction may affect endothelial cell function and vascular network formation. Sci. Rep. 9:9876, 2019.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Turco, M. Y., and A. Moffett. Development of the human placenta. Development 146:163428, 2019.

    Article  CAS  Google Scholar 

  91. Turco, M. Y., L. Gardner, J. Hughes, T. Cindrova-Davies, M. J. Gomez, L. Farrell, M. Hollinshead, S. G. E. Marsh, J. J. Brosens, H. O. Critchley, B. D. Simons, M. Hemberger, B.-Y. Koo, A. Moffett, and G. J. Burton. Long-term, hormone-responsive organoid cultures of human endometrium in a chemically defined medium. Nat. Cell Biol. 19:568–577, 2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Turco, M. Y., L. Gardner, R. G. Kay, R. S. Hamilton, M. Prater, M. S. Hollinshead, A. McWhinnie, L. Esposito, R. Fernando, H. Skelton, F. Reimann, F. M. Gribble, A. Sharkey, S. G. E. Marsh, S. O’Rahilly, M. Hemberger, G. J. Burton, and A. Moffett. Trophoblast organoids as a model for maternal–fetal interactions during human placentation. Nature 564:263–267, 2018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Vargesson, N. Thalidomide-induced teratogenesis: history and mechanisms. Birth Defects Res. Part C 105:140–156, 2015.

    Article  CAS  Google Scholar 

  94. Villar, J., A. T. Papageorghiou, H. E. Knight, M. G. Gravett, J. Iams, S. A. Waller, M. Kramer, J. F. Culhane, F. C. Barros, A. Conde-Agudelo, Z. A. Bhutta, and R. L. Goldenberg. The preterm birth syndrome: a prototype phenotypic classification. Am. J. Obstet. Gynecol. 206:119–123, 2012.

    Article  PubMed  Google Scholar 

  95. Walani, S. R. Global Burden of Preterm Birth. Int. J. Gynecol Obstet 150:31–33, 2020.

    Article  Google Scholar 

  96. Wang, Z., X. He, H. Qiao, and P. Chen. Global trends of organoid and organ-on-a-chip in the past decade: a bibliometric and comparative study. Tissue Eng. Part A 26:656–671, 2020.

    Article  PubMed  Google Scholar 

  97. Westerveldt, A. R., and K. M. Myers. Computer modeling tools to understand the causes of preterm birth. Semin. Perinatol. 41:485–492, 2017.

    Article  Google Scholar 

  98. Xiao, S., J. R. Coppeta, H. B. Rogers, B. C. Isenberg, J. Zhu, S. A. Olalekan, K. E. McKinnon, D. Dokic, A. S. Rashedi, D. J. Haisenleder, S. S. Malpani, C. A. Arnold-Murray, K. Chen, M. Jiang, L. Bai, C. T. Nguyen, J. Zhang, M. M. Laronda, T. J. Hope, K. P. Maniar, M. E. Pavone, M. J. Avram, E. C. Sefton, S. Getsios, J. E. Burdette, J. J. Kim, J. T, Borenstein, and T. K. Woodruff. A microfluidic culture model of the human reproductive tract and 28-day menstrual cycle. Nat. Commun. 8:14584, 2017.

  99. Xu, H., X. Liu, and W. Le. Recent advances in microfluidic models for cancer metastasis research. Trends Anal. Chem. 105:1–6, 2018.

    Article  CAS  Google Scholar 

  100. Zambuto, S. G., K. B. H. Clancy, and B. A. C. Harley. A gelatin hydrogel to study endometrial angiogenesis and trophoblast invasion. Interface Focus. 9:20190016, 2019.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Zhu, J.-Y., Z.-J. Pang, and Y.-H. Yu. Regulation of trophoblast invasion: the role of matrix metalloproteinases. Rev. Obstet. Gynecol. 5:e137–e143, 2012.

    PubMed  PubMed Central  Google Scholar 

  102. Zhu, Y., F. Yin, H. Wang, L. Wang, J. Yuan, and J. Qin. Placental barrier-on-a-chip: modeling placental inflammatory responses to bacterial infection. ACS Biomaterials Sci Eng. 4:3356–3363, 2018.

    Article  CAS  Google Scholar 

Download references

Funding

Funding was provided by the East Carolina University Division of Research, Economic Development and Engagement (REDE) via start-up funds to MLO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michelle L. Oyen.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Additional information

Associate Editor Stefan M. Duma oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wheeler, M.L., Oyen, M.L. Bioengineering Approaches for Placental Research. Ann Biomed Eng 49, 1805–1818 (2021). https://doi.org/10.1007/s10439-020-02714-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-020-02714-7

Keywords

Navigation