Skip to main content

Advertisement

Log in

A non-destructive method for estimating woody biomass and carbon stocks of Vitellaria paradoxa in southern Mali, West Africa

  • Published:
Agroforestry Systems Aims and scope Submit manuscript

Abstract

The shea tree, Vitellaria paradoxa, shields people, crops and livestock in West African parkland agroforestry systems from climate variability. Accurate estimates of accumulated biomass of such key species may support ways to secure financial incentives within global climate policies. In this quest, variation in allometric relations used for biomass (carbon stock) estimates on the basis of stem diameter matters, but parameters a and b of the standard format (AGB = a Db; AGB = aboveground biomass, D = stem diameter) are correlated and are directly related to tree shapes. Functional branch analysis (FBA) allows non-destructive derivation of allometrics. For Koutiala and Yanfolila shea populations empirical branching parameters were scale-independent, matching FBA assumptions. Allometry (AGB = 169 (D/20)2.64 and AGB = 146 (D/20)2.65, kg tree−1) implied 22%, 16% and 11% larger vegetative aboveground biomass in Koutiala than in Yanfolila at stem diameters (D) of 10, 20 and 32 cm, respectively. Below-ground biomass predictions (BGBi = 8.73 (Di/10)2.35 and BGBi = 8.16 (Di/10)2.38, kg per proximal root) differed − 6% and − 15% for root diameters Di of 10 and 32 cm, respectively. On a dry weight basis, the shoot:root ratio was 2.7 and 2.9, respectively for the two sites. Stand-level above-and below-ground carbon stocks in Koutiala (2.16 ± 0.44 and 0.8 ± 0.15 Mg C ha−1) were not significantly different from those in Yanfolila (3.21 ± 0.60 and 1.26 ± 0.21 Mg C ha−1), respectively. Further research is required to include (potential) fruit production to the plant architectural model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Agúndez D, Nouhoheflin T, Coulibaly O, Soliño M, Alía R (2020) Local preferences for shea nut and butter production in Northern Benin: preliminary results. Forests. https://doi.org/10.3390/f11010013

    Article  Google Scholar 

  • Basuki MT, van Laake EP, Skidmore KA, Hussin AY (2014) Allometric equations for estimating the aboveground biomass in tropical lowland Dipterocarp forests. For Ecol Manag 257: 1684–1694

    Article  Google Scholar 

  • Chave J, Andalo C, Brown S, Cairns MA, Chambers JQ, Eamus D, Folster H, Fromard F, Higuchi N, Kira T, Lescure JP, Puig H, Riera B, Yamakura T (2005) Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145:87–99. https://doi.org/10.1007/s00442-005-0100-x

    Article  CAS  PubMed  Google Scholar 

  • Dimobe K, Ouédraogo A, Ouédraogo K et al (2020) (2020) Climate change reduces the distribution area of the shea tree (Vitellaria paradoxa C.F. Gaertn.) in Burkina Faso. J Arid Environ 181:104237. https://doi.org/10.1016/j.jaridenv.2020.104237

    Article  Google Scholar 

  • Ekoungoulou R, Liu X, Loumeto JJ, Ifo SA (2014) Tree above and belowground biomass allometrics for carbon stocks estimation in secondary forest of Congo. JSTFT 8:9–20

    Google Scholar 

  • Enquist BJ (2002) Universal scaling in tree and vascular plant allometry: towards a general quantitative theory linking plant form and function from cells to ecosystems. Tree Physiol 22: 1045–1064

    Article  PubMed  Google Scholar 

  • Henry M, Picard N, Trotta C, Manlay RJ, Valentini R, Bernoux M, Saint-André L (2011) Estimating tree biomass of sub-Saharan African forests: a review of available allometric equations. SF 45: 477–569

    Google Scholar 

  • IPCC (2006). In: Eggleston S, Beundia L, Miaw K, Ngara T, Tanabe K (eds) IPCC guidelines for national greenhouse inventories. Volume 4. Agriculture, forestry and other land use. Intergovernmental Panel on Climate change (IPCC), IPCC/IGES, Hayama, Japan, pp 48–49

  • Jibrin A, Abdulkadir A (2015) Allometric models for biomass estimation in Savanna Woodland Area, Niger State, Nigeria. Int J Environ Ecol Geol Geophys Eng 9:209–217

    Google Scholar 

  • Kaonga LM (2012) Fractal analysis of canopy architectures of Acacia angustissima, Gliricidia sepium, and Leucaena collinsii for estimation of aboveground biomass in a short rotation forest in eastern Zambia. J For Res 23:1–12

    Article  Google Scholar 

  • Ketterings QM, Coe R, Van Noordwijk M, Ambagau Y, Palm CA (2000) Reducing uncertainty in the use of allometric biomass equations for predicting above-ground tree biomass in mixed secondary forests. For Ecol Manag 146:199–209

    Article  Google Scholar 

  • Kuyah S, Dietz J, Murthuri C, Jammadass R, Mwangi P, Coe R, Neufeldt H (2012) Allometrics equations for estimating biomass in agricultural landscapes: belowground biomass. Agric Ecosyst Environ 158:225–234

    Article  Google Scholar 

  • Kuyah S, Dietz J, Muthuri C, van Noordwijk M, Neufeldt H (2014) Allometry and partitioning of above-and below-ground biomass in farm eucalyptus species dominate in Western Kenyan agricultural landscapes. Biomass Bioenergy 55:276–284

    Article  Google Scholar 

  • Luedeling E, Neufeldt H (2012) Carbon sequestration potential of parkland agroforestry in the Sahel. Clim Change 115:443–461

    Article  CAS  Google Scholar 

  • MacFarlane DW, Kuyah S, Mulia R, Dietz J, Muthuri C, Van Noordwijk M (2014) Evaluating a non-destructive method for calibrating tree biomass equations derived from tree branching architecture. Trees 28(3):807–817

    Google Scholar 

  • Minang PA, Duguma LA, Bernard F, Mertz O, van Noordwijk M (2014) Prospects for agroforestry in REDD+ landscapes in Africa. Curr Opin Environ Sustain 6:78–82

    Article  Google Scholar 

  • Naughton CC, Lovett PN, Mihelcic JR (2015) Land suitability modeling of shea (Vitellaria paradoxa) distribution across sub-Saharan Africa. Appl Geogr 58:217–227

    Article  Google Scholar 

  • Peltier R, Njiti FC, Ntoupka M, Manlay R, Henry M, Morillon V (2007) Evaluation du stock de carbone et de la productivité en bois d’un parc à karités du Nord-Cameroun. Revue Bois et Forêt des Tropiques 294:39–50

    Google Scholar 

  • Ryan CM, Williams M, Grace J (2011) Above- and belowground carbon stocks in a Miombo woodland landscape of Mozambique. Biotropica 43:423–432

    Article  Google Scholar 

  • Saïdou A, Dossa EFA, Gnangle CP, Balogoun I, Aho N (2012) Evaluation du stock de carbone dans les systèmes agroforestiers à karité (Vitellaria paradoxa C.F. Gaertn.) et à néré (Parkia biglobosa Jacq. G. Don) en zone Soudanienne du Bénin. Agric Forêt 11:1025–2325

    Google Scholar 

  • Sanogo K, Gebrekirstos A, Bayala J, Villamor GB, Kalinganire A, Dodiomon S (2016) Potential of dendrochronology in assessing carbon sequestration rates of Vitellaria paradoxa in southern Mali, West Africa. Dendrochronologia 40:26–35

    Article  Google Scholar 

  • Takimoto A, Nair PKR, Nair VD (2008) Carbon stock and sequestration potential of traditional and improved agroforestry systems in the West African Sahel. Agric Ecosyst Environ 125:159–166

    Article  CAS  Google Scholar 

  • Tjeuw J, Mulia R, Slingerland M, Van Noordwijk M (2015) Tree or shrub: a functional branch analysis of Jatropha curcas L. Agrofor Syst 89:841–856

    Article  Google Scholar 

  • Tom-Dery D, Eller F, Reisdorff C, Jensen K (2017) Shea (Vitellaria paradoxa CF Gaertn.) at the crossroads: current knowledge and research gaps. Agrofor Syst. https://doi.org/10.1007/s10457-017-0080-y

    Article  Google Scholar 

  • Traoré K, Ganry F, Olivier R, Gigou J (2004) Litter production and soil fertility in a Vitellaria parkland in a catena in southern Mali. Arid Land Res Manag 18:359–368

    Article  Google Scholar 

  • Traore K, Birhanu Z (2019) Soil erosion control and moisture conservation using contour ridge tillage in Bougouni and Koutiala, Southern Mali. J Environ Prot 10:1333–1360

    Article  CAS  Google Scholar 

  • Van Noordwijk M, Mulia R (2002) Functional branch analysis as tool for scaling above and belowground trees for their additive and non-additive properties. Ecol Model 149:41–51

    Article  Google Scholar 

  • Van Noordwijk M, Rahayu S, Hairiah K, Wulan YC, Farida A, Verbist B (2002) Carbon stock assessment for a forest-to-coffee conversion landscape in Sumber-Jaya (Lampung, Indonesia): from allometric equation to land use change analysis. Sci China Ser C Life Sci 45:75–86

    Google Scholar 

Download references

Acknowledgements

This research was funded by the West African Science Service Center on Climate Change and Adapted Land Use (WASCAL) program; the International Foundation for Science (IFS) and the Committee on Scientific, Technological Cooperation of the Organization of Islamic Conference (COMSTECH) (Grant Number NO. D/5618-1), and Forest, Trees and Agroforestry (FTA) CRP, which are gratefully acknowledged. We extend our thanks to the staff of the World Agroforestry (ICRAF)- Mali office for logistical support during the fieldwork and supervisory work. We thank the farmers for allowing us to work in their fields.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kapoury Sanogo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanogo, K., Bayala, J., Villamor, G.B. et al. A non-destructive method for estimating woody biomass and carbon stocks of Vitellaria paradoxa in southern Mali, West Africa. Agroforest Syst 95, 135–150 (2021). https://doi.org/10.1007/s10457-020-00578-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10457-020-00578-3

Keywords

Navigation