Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

CRISPR technologies for precise epigenome editing

Abstract

The epigenome involves a complex set of cellular processes governing genomic activity. Dissecting this complexity necessitates the development of tools capable of specifically manipulating these processes. The repurposing of prokaryotic CRISPR systems has allowed for the development of diverse technologies for epigenome engineering. Here, we review the state of currently achievable epigenetic manipulations along with corresponding applications. With future optimization, CRISPR-based epigenomic editing stands as a set of powerful tools for understanding and controlling biological function.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Epigenetic processes within the cell.
Fig. 2: CRISPR technologies for epigenome engineering.
Fig. 3: Pipelines for optimization of CRISPR-based epigenetic engineering.

Similar content being viewed by others

References

  1. Cavalli, G. & Heard, E. Advances in epigenetics link genetics to the environment and disease. Nature 571, 489–499 (2019).

    Article  CAS  PubMed  Google Scholar 

  2. Klemm, S. L., Shipony, Z. & Greenleaf, W. J. Chromatin accessibility and the regulatory epigenome. Nat. Rev. Genet. 20, 207–220 (2019).

    Article  CAS  PubMed  Google Scholar 

  3. Bannister, A. J. & Kouzarides, T. Regulation of chromatin by histone modifications. Cell Res. 21, 381–395 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cao, J. & Yan, Q. Histone ubiquitination and deubiquitination in transcription, DNA damage response, and cancer. Front. Oncol. 2, 26 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Du, J., Johnson, L. M., Jacobsen, S. E. & Patel, D. J. DNA methylation pathways and their crosstalk with histone methylation. Nat. Rev. Mol. Cell Biol. 16, 519–532 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Akhtar, W. et al. Chromatin position effects assayed by thousands of reporters integrated in parallel. Cell 154, 914–927 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. Stuart, T. & Satija, R. Integrative single-cell analysis. Nat. Rev. Genet. 20, 257–272 (2019).

    Article  CAS  PubMed  Google Scholar 

  8. Moore, J. E. et al. Expanded encyclopaedias of DNA elements in the human and mouse genomes. Nature 583, 699–710 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Kim, S. & Shendure, J. Mechanisms of interplay between transcription factors and the 3D genome. Mol. Cell 76, 306–319 (2019).

    Article  CAS  PubMed  Google Scholar 

  10. Li, X. & Fu, X.-D. Chromatin-associated RNAs as facilitators of functional genomic interactions. Nat. Rev. Genet. 20, 503–519 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Palikyras, S. & Papantonis, A. Modes of phase separation affecting chromatin regulation. Open Biol. 9, 190167 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zheng, H. & Xie, W. The role of 3D genome organization in development and cell differentiation. Nat. Rev. Mol. Cell Biol. 20, 535–550 (2019).

    Article  CAS  PubMed  Google Scholar 

  13. Erdel, F. How communication between nucleosomes enables spreading and epigenetic memory of histone modifications. BioEssays 39, 1700053 (2017).

    Article  CAS  Google Scholar 

  14. Keung, A. J., Joung, J. K., Khalil, A. S. & Collins, J. J. Chromatin regulation at the frontier of synthetic biology. Nat. Rev. Genet. 16, 159–171 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sanulli, S. et al. HP1 reshapes nucleosome core to promote phase separation of heterochromatin. Nature 575, 390–394 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang, L. et al. Histone modifications regulate chromatin compartmentalization by contributing to a phase separation mechanism. Mol. Cell 76, 646–659.e6 (2019).

    Article  CAS  PubMed  Google Scholar 

  17. Stricker, S. H., Köferle, A. & Beck, S. From profiles to function in epigenomics. Nat. Rev. Genet. 18, 51–66 (2017).

    Article  CAS  PubMed  Google Scholar 

  18. Holtzman, L. & Gersbach, C. A. Editing the epigenome: reshaping the genomic landscape. Annu. Rev. Genomics Hum. Genet. 19, 43–71 (2018).

    Article  CAS  PubMed  Google Scholar 

  19. Weinberg, D. N. et al. The histone mark H3K36me2 recruits DNMT3A and shapes the intergenic DNA methylation landscape. Nature 573, 281–286 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gasperini, M., Tome, J. M. & Shendure, J. Towards a comprehensive catalogue of validated and target-linked human enhancers. Nat. Rev. Genet. 21, 292–310 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Verschure, P. J. et al. In vivo HP1 targeting causes large-scale chromatin condensation and enhanced histone lysine methylation. Mol. Cell. Biol. 25, 4552–4564 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hathaway, N. A. et al. Dynamics and memory of heterochromatin in living cells. Cell 149, 1447–1460 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Keung, A. J., Bashor, C. J., Kiriakov, S., Collins, J. J. & Khalil, A. S. Using targeted chromatin regulators to engineer combinatorial and spatial transcriptional regulation. Cell 158, 110–120 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bintu, L. et al. Dynamics of epigenetic regulation at the single-cell level. Science 351, 720–724 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gao, X. et al. Comparison of TALE designer transcription factors and the CRISPR/dCas9 in regulation of gene expression by targeting enhancers. Nucleic Acids Res. 42, e155 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Amabile, A. et al. Inheritable silencing of endogenous genes by hit-and-run targeted epigenetic editing. Cell 167, 219–232.e14 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yamazaki, T. et al. Targeted DNA methylation in pericentromeres with genome editing-based artificial DNA methyltransferase. PLoS ONE 12, e0177764 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Mlambo, T. et al. Designer epigenome modifiers enable robust and sustained gene silencing in clinically relevant human cells. Nucleic Acids Res. 46, 4456–4468 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Qi, L. S. et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152, 1173–1183 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zalatan, J. G. G. et al. Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds. Cell 160, 339–350 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Konermann, S. et al. Genome-scale transcriptional activation by an engineered CRISPR–Cas9 complex. Nature 517, 583–588 (2015).

    Article  CAS  PubMed  Google Scholar 

  32. Chavez, A. et al. Highly efficient Cas9-mediated transcriptional programming. Nat. Methods 12, 326–328 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chavez, A. et al. Comparison of Cas9 activators in multiple species. Nat. Methods 13, 563–567 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yeo, N. C. et al. An enhanced CRISPR repressor for targeted mammalian gene regulation. Nat. Methods 15, 611–616 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Moghadam, F. et al. Synthetic immunomodulation with a CRISPR super-repressor in vivo. Nat. Cell Biol. 22, 1143–1154 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Raffeiner, P. et al. An MXD1-derived repressor peptide identifies noncoding mediators of MYC-driven cell proliferation. Proc. Natl Acad. Sci. USA 117, 6571–6579 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Thakore, P. I. et al. Highly specific epigenome editing by CRISPR–Cas9 repressors for silencing of distal regulatory elements. Nat. Methods 12, 1143–1149 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Polstein, L. R. et al. Genome-wide specificity of DNA binding, gene regulation, and chromatin remodeling by TALE- and CRISPR/Cas9-based transcriptional activators. Genome Res. 25, 1158–1169 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fulco, C. P. et al. Systematic mapping of functional enhancer–promoter connections with CRISPR interference. Science 354, 769–773 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cano-Rodriguez, D. et al. Writing of H3K4Me3 overcomes epigenetic silencing in a sustained but context-dependent manner. Nat. Commun. 7, 12284 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Black, J. B. et al. Targeted epigenetic remodeling of endogenous loci by CRISPR/Cas9-based transcriptional activators directly converts fibroblasts to neuronal cells. Cell Stem Cell 19, 406–414 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Liao, H.-K. et al. In vivo target gene activation via CRISPR/Cas9-mediated trans-epigenetic modulation. Cell 171, 1495–1507.e15 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Xie, S., Duan, J., Li, B., Zhou, P. & Hon, G. C. Multiplexed engineering and analysis of combinatorial enhancer activity in single cells. Mol. Cell 66, 285–299.e5 (2017).

    Article  CAS  PubMed  Google Scholar 

  44. Liu, P., Chen, M., Liu, Y., Qi, L. S. & Ding, S. CRISPR-based chromatin remodeling of the endogenous Oct4 or Sox2 locus enables reprogramming to pluripotency. Cell Stem Cell 22, 252–261.e4 (2018).

    Article  CAS  PubMed  Google Scholar 

  45. Kearns, N. A. et al. Functional annotation of native enhancers with a Cas9–histone demethylase fusion. Nat. Methods 12, 401–403 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. O’Geen, H. et al. dCas9-based epigenome editing suggests acquisition of histone methylation is not sufficient for target gene repression. Nucleic Acids Res. 45, 9901–9916 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Klann, T. S. et al. CRISPR–Cas9 epigenome editing enables high-throughput screening for functional regulatory elements in the human genome. Nat. Biotechnol. 35, 561–568 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Simeonov, D. R. et al. Discovery of stimulation-responsive immune enhancers with CRISPR activation. Nature 549, 111–115 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. O’Geen, H. et al. Ezh2-dCas9 and KRAB-dCas9 enable engineering of epigenetic memory in a context-dependent manner. Epigenetics Chromatin 12, 26 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Morton, A. R. et al. Functional enhancers shape extrachromosomal oncogene amplifications. Cell 179, 1330–1341.e13 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Fulco, C. P. et al. Activity-by-contact model of enhancer–promoter regulation from thousands of CRISPR perturbations. Nat. Genet. 51, 1664–1669 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Pickar-Oliver, A. & Gersbach, C. A. The next generation of CRISPR–Cas technologies and applications. Nat. Rev. Mol. Cell Biol. 20, 490–507 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kim, J.-M. et al. Cooperation between SMYD3 and PC4 drives a distinct transcriptional program in cancer cells. Nucleic Acids Res. 43, 8868–8883 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wang, H. et al. Epigenetic targeting of Granulin in hepatoma cells by synthetic CRISPR dCas9 Epi-suppressors. Mol. Ther. Nucleic Acids 11, 23–33 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Braun, S. M. G. et al. Rapid and reversible epigenome editing by endogenous chromatin regulators. Nat. Commun. 8, 560 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Li, K. et al. Interrogation of enhancer function by enhancer-targeting CRISPR epigenetic editing. Nat. Commun. 11, 485 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Kuscu, C. et al. Temporal and spatial epigenome editing allows precise gene regulation in mammalian cells. J. Mol. Biol. 431, 111–121 (2019).

    Article  CAS  PubMed  Google Scholar 

  58. Chiarella, A. M. et al. Dose-dependent activation of gene expression is achieved using CRISPR and small molecules that recruit endogenous chromatin machinery. Nat. Biotechnol. 38, 50–55 (2020).

    Article  CAS  PubMed  Google Scholar 

  59. Hilton, I. B. et al. Epigenome editing by a CRISPR–Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat. Biotechnol. 33, 510–517 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Cheng, A. W. et al. Casilio: a versatile CRISPR–Cas9-Pumilio hybrid for gene regulation and genomic labeling. Cell Res. 26, 254–257 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Chen, T. et al. Chemically controlled epigenome editing through an inducible dCas9 system. J. Am. Chem. Soc. 139, 11337–11340 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kwon, D. Y., Zhao, Y.-T., Lamonica, J. M. & Zhou, Z. Locus-specific histone deacetylation using a synthetic CRISPR–Cas9-based HDAC. Nat. Commun. 8, 15315 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Okada, M., Kanamori, M., Someya, K., Nakatsukasa, H. & Yoshimura, A. Stabilization of Foxp3 expression by CRISPR–dCas9-based epigenome editing in mouse primary T cells. Epigenetics Chromatin 10, 24 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Shrimp, J. H. et al. Chemical control of a CRISPR–Cas9 acetyltransferase. ACS Chem. Biol. 13, 455–460 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zhang, X. et al. Gene activation in human cells using CRISPR/Cpf1-p300 and CRISPR/Cpf1-SunTag systems. Protein Cell 9, 380–383 (2018).

    Article  CAS  PubMed  Google Scholar 

  66. Saunderson, E. A. et al. Hit-and-run epigenetic editing prevents senescence entry in primary breast cells from healthy donors. Nat. Commun. 8, 1450 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Xiong, T. et al. Targeted DNA methylation in human cells using engineered dCas9-methyltransferases. Sci. Rep. 7, 6732 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Galonska, C. et al. Genome-wide tracking of dCas9-methyltransferase footprints. Nat. Commun. 9, 597 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Pflueger, C. et al. A modular dCas9-SunTag DNMT3A epigenome editing system overcomes pervasive off-target activity of direct fusion dCas9–DNMT3A constructs. Genome Res. 28, 1193–1206 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lin, L. et al. Genome-wide determination of on-target and off-target characteristics for RNA-guided DNA methylation by dCas9 methyltransferases. Gigascience 7, 1–19 (2018).

    Article  PubMed  Google Scholar 

  71. Hofacker, D. et al. Engineering of effector domains for targeted DNA methylation with reduced off-target effects. Int. J. Mol. Sci. 21, 502 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  72. Xu, X. et al. A CRISPR-based approach for targeted DNA demethylation. Cell Discov. 2, 16009 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Choudhury, S. R., Cui, Y., Lubecka, K., Stefanska, B. & Irudayaraj, J. CRISPR–dCas9 mediated TET1 targeting for selective DNA demethylation at BRCA1 promoter. Oncotarget 7, 46545–46556 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Morita, S. et al. Targeted DNA demethylation in vivo using dCas9–peptide repeat and scFv–TET1 catalytic domain fusions. Nat. Biotechnol. 34, 1060–1065 (2016).

    Article  CAS  PubMed  Google Scholar 

  75. Liu, X. S. et al. Rescue of fragile X syndrome neurons by DNA methylation editing of the FMR1 gene. Cell 172, 979–992.e6 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kantor, B. et al. Downregulation of SNCA expression by targeted editing of DNA methylation: a potential strategy for precision therapy in PD. Mol. Ther. 26, 2638–2649 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Marx, N. et al. CRISPR-based targeted epigenetic editing enables gene expression modulation of the silenced beta-galactoside alpha-2,6-sialyltransferase 1 in CHO cells. Biotechnol. J. 13, 1700217 (2018).

    Article  CAS  Google Scholar 

  78. Mkannez, G. et al. DNA methylation of a PLPP3 MIR transposon-based enhancer promotes an osteogenic programme in calcific aortic valve disease. Cardiovasc. Res. 114, 1525–1535 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Xu, X. et al. High-fidelity CRISPR/Cas9-based gene-specific hydroxymethylation rescues gene expression and attenuates renal fibrosis. Nat. Commun. 9, 3509 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Ziller, M. J. et al. Dissecting the functional consequences of de novo DNA methylation dynamics in human motor neuron differentiation and physiology. Cell Stem Cell 22, 559–574.e9 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Baumann, V. et al. Targeted removal of epigenetic barriers during transcriptional reprogramming. Nat. Commun. 10, 2119 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. McDonald, J. I. et al. Reprogrammable CRISPR/Cas9-based system for inducing site-specific DNA methylation. Biol. Open 5, 866–874 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Vojta, A. et al. Repurposing the CRISPR–Cas9 system for targeted DNA methylation. Nucleic Acids Res. 44, 5615–5628 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Liu, X. S. et al. Editing DNA methylation in the mammalian genome. Cell 167, 233–247.e17 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Huang, Y.-H. et al. DNA epigenome editing using CRISPR–Cas SunTag-directed DNMT3A. Genome Biol. 18, 176 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Stepper, P. et al. Efficient targeted DNA methylation with chimeric dCas9–Dnmt3a–Dnmt3L methyltransferase. Nucleic Acids Res. 45, 1703–1713 (2017).

    Article  CAS  PubMed  Google Scholar 

  87. Lei, Y. et al. Targeted DNA methylation in vivo using an engineered dCas9–MQ1 fusion protein. Nat. Commun. 8, 16026 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Gasperini, M. et al. A genome-wide framework for mapping gene regulation via cellular genetic screens. Cell 176, 377–390.e19 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. D’Ippolito, A. M. et al. Pre-established chromatin interactions mediate the genomic response to glucocorticoids. Cell Syst. 7, 146–160.e7 (2018).

    Article  PubMed  CAS  Google Scholar 

  90. Gao, Y. et al. Complex transcriptional modulation with orthogonal and inducible dCas9 regulators. Nat. Methods 13, 1043–1049 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Tarjan, D. R., Flavahan, W. A. & Bernstein, B. E. Epigenome editing strategies for the functional annotation of CTCF insulators. Nat. Commun. 10, 4258 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Kim, D., Luk, K., Wolfe, S. A. & Kim, J.-S. Evaluating and enhancing target specificity of gene-editing nucleases and deaminases. Annu. Rev. Biochem. 88, 191–220 (2019).

    Article  CAS  PubMed  Google Scholar 

  93. Barkal, A. A., Srinivasan, S., Hashimoto, T., Gifford, D. K. & Sherwood, R. I. Cas9 functionally opens chromatin. PLoS ONE 11, e0152683 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Dall’Agnese, A. et al. Transcription factor-directed re-wiring of chromatin architecture for somatic cell nuclear reprogramming toward trans-differentiation. Mol. Cell 76, 453–472.e8 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Shariati, S. A. et al. Reversible disruption of specific transcription factor–DNA interactions using CRISPR/Cas9. Mol. Cell 74, 622–633.e4 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Aparicio-Prat, E. et al. DECKO: single-oligo, dual-CRISPR deletion of genomic elements including long non-coding RNAs. BMC Genomics 16, 846 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Adamson, B. et al. A multiplexed single-cell CRISPR screening platform enables systematic dissection of the unfolded protein response. Cell 167, 1867–1882.e21 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Zhu, S. et al. Genome-scale deletion screening of human long non-coding RNAs using a paired-guide RNA CRISPR–Cas9 library. Nat. Biotechnol. 34, 1279–1286 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Cho, W.-K. et al. Mediator and RNA polymerase II clusters associate in transcription-dependent condensates. Science 361, 412–415 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Gu, B. et al. Transcription-coupled changes in nuclear mobility of mammalian cis-regulatory elements. Science 359, 1050–1055 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Norman, T. M. et al. Exploring genetic interaction manifolds constructed from rich single-cell phenotypes. Science 365, 786–793 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Paul, B. & Montoya, G. CRISPR–Cas12a: functional overview and applications. Biomed. J. 43, 8–17 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Dalgliesh, G. L. et al. Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes. Nature 463, 360–363 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Guccione, E. & Richard, S. The regulation, functions and clinical relevance of arginine methylation. Nat. Rev. Mol. Cell Biol. 20, 642–657 (2019).

    Article  CAS  PubMed  Google Scholar 

  105. Pradeepa, M. M. et al. Histone H3 globular domain acetylation identifies a new class of enhancers. Nat. Genet. 48, 681–686 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Fischle, W. et al. Regulation of HP1–chromatin binding by histone H3 methylation and phosphorylation. Nature 438, 1116–1122 (2005).

    Article  CAS  PubMed  Google Scholar 

  107. Kebede, A. F. et al. Histone propionylation is a mark of active chromatin. Nat. Struct. Mol. Biol. 24, 1048–1056 (2017).

    Article  CAS  PubMed  Google Scholar 

  108. Tan, M. et al. Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell 146, 1016–1028 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Kweon, S.-M. et al. An adversarial DNA N6-methyladenine-sensor network preserves Polycomb silencing. Mol. Cell 74, 1138–1147.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Diao, Y. et al. A tiling-deletion-based genetic screen for cis-regulatory element identification in mammalian cells. Nat. Methods 14, 629–635 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Gasperini, M. et al. CRISPR/Cas9-mediated scanning for regulatory elements required for HPRT1 expression via thousands of large, programmed genomic deletions. Am. J. Hum. Genet. 101, 192–205 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Canver, M. C. et al. Variant-aware saturating mutagenesis using multiple Cas9 nucleases identifies regulatory elements at trait-associated loci. Nat. Genet. 49, 625–634 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Dickel, D. E. et al. Ultraconserved enhancers are required for normal development. Cell 172, 491–499.e15 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Osterwalder, M. et al. Enhancer redundancy provides phenotypic robustness in mammalian development. Nature 554, 239–243 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Canver, M. C. et al. BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis. Nature 527, 192–197 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Lupiáñez, D. G. et al. Disruptions of topological chromatin domains cause pathogenic rewiring of gene–enhancer interactions. Cell 161, 1012–1025 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Diao, Y. et al. A new class of temporarily phenotypic enhancers identified by CRISPR/Cas9-mediated genetic screening. Genome Res. 26, 397–405 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Korkmaz, G. et al. Functional genetic screens for enhancer elements in the human genome using CRISPR–Cas9. Nat. Biotechnol. 34, 192–198 (2016).

    Article  CAS  PubMed  Google Scholar 

  119. Sanjana, N. E. et al. High-resolution interrogation of functional elements in the noncoding genome. Science 353, 1545–1549 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Rajagopal, N. et al. High-throughput mapping of regulatory DNA. Nat. Biotechnol. 34, 167–174 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Sen, D. R. et al. The epigenetic landscape of T cell exhaustion. Science 354, 1165–1169 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Shin, H. Y. et al. Hierarchy within the mammary STAT5-driven Wap super-enhancer. Nat. Genet. 48, 904–911 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Liu, Y. et al. Genome-wide screening for functional long noncoding RNAs in human cells by Cas9 targeting of splice sites. Nat. Biotechnol. 36, 1203–1210 (2018).

    Article  CAS  Google Scholar 

  124. Joung, J. et al. Genome-scale activation screen identifies a lncRNA locus regulating a gene neighbourhood. Nature 548, 343–346 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Liu, S. J. et al. CRISPRi-based genome-scale identification of functional long noncoding RNA loci in human cells. Science 355, eaah7111 (2017).

    Article  CAS  Google Scholar 

  126. Bester, A. C. et al. An integrated genome-wide CRISPRa approach to functionalize lncRNAs in drug resistance. Cell 173, 649–664.e20 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Horlbeck, M. A. et al. Nucleosomes impede Cas9 access to DNA in vivo and in vitro. eLife 5, e12677 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Morgan, S. L. et al. Manipulation of nuclear architecture through CRISPR-mediated chromosomal looping. Nat. Commun. 8, 15993 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Kim, J. H. et al. LADL: light-activated dynamic looping for endogenous gene expression control. Nat. Methods 16, 633–639 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Wang, H. et al. CRISPR-mediated programmable 3D genome positioning and nuclear organization. Cell 175, 1405–1417.e14 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Xu, X. et al. Gene activation by a CRISPR-assisted trans enhancer. eLife 8, e45973 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Guo, Y. et al. CRISPR inversion of CTCF sites alters genome topology and enhancer/promoter function. Cell 162, 900–910 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Guo, Y. et al. CRISPR-mediated deletion of prostate cancer risk-associated CTCF loop anchors identifies repressive chromatin loops. Genome Biol. 19, 160 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Flavahan, W. A. et al. Altered chromosomal topology drives oncogenic programs in SDH-deficient GISTs. Nature 575, 229–233 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Shin, Y. et al. Liquid nuclear condensates mechanically sense and restructure the genome. Cell 175, 1481–1491.e13 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Park, M., Patel, N., Keung, A. J. & Khalil, A. S. Engineering epigenetic regulation using synthetic read–write modules. Cell 176, 227–238.e20 (2019).

    Article  CAS  PubMed  Google Scholar 

  137. Roundtree, I. A., Evans, M. E., Pan, T. & He, C. Dynamic RNA modifications in gene expression regulation. Cell 169, 1187–1200 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Madugalle, S. U., Meyer, K., Wang, D. O. & Bredy, T. W. RNA N6-methyladenosine and the regulation of RNA localization and function in the brain. Trends Neurosci. https://doi.org/10.1016/j.tins.2020.09.005 (2020).

  139. Liu, X.-M., Zhou, J., Mao, Y., Ji, Q. & Qian, S.-B. Programmable RNA N6-methyladenosine editing by CRISPR–Cas9 conjugates. Nat. Chem. Biol. 15, 865–871 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Shechner, D. M., Hacisuleyman, E., Younger, S. T. & Rinn, J. L. Multiplexable, locus-specific targeting of long RNAs with CRISPR-Display. Nat. Methods 12, 664–670 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Han, S. et al. RNA–protein interaction mapping via MS2- or Cas13-based APEX targeting. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.2006617117 (2020).

  142. Nakamura, M. et al. Anti-CRISPR-mediated control of gene editing and synthetic circuits in eukaryotic cells. Nat. Commun. 10, 194 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Bubeck, F. et al. Engineered anti-CRISPR proteins for optogenetic control of CRISPR–Cas9. Nat. Methods 15, 924–927 (2018).

    Article  CAS  PubMed  Google Scholar 

  144. Giesselmann, P. et al. Analysis of short tandem repeat expansions and their methylation state with nanopore sequencing. Nat. Biotechnol. 37, 1478–1481 (2019).

    Article  CAS  PubMed  Google Scholar 

  145. Wang, H. et al. CRISPR-mediated live imaging of genome editing and transcription. Science 365, 1301–1305 (2019).

    Article  CAS  PubMed  Google Scholar 

  146. Chen, H. et al. Dynamic interplay between enhancer–promoter topology and gene activity. Nat. Genet. 50, 1296–1303 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Fujita, T. & Fujii, H. Efficient isolation of specific genomic regions and identification of associated proteins by engineered DNA-binding molecule-mediated chromatin immunoprecipitation (enChIP) using CRISPR. Biochem. Biophys. Res. Commun. 439, 132–136 (2013).

    Article  CAS  PubMed  Google Scholar 

  148. Fujita, T., Yuno, M. & Fujii, H. Efficient sequence-specific isolation of DNA fragments and chromatin by in vitro enChIP technology using recombinant CRISPR ribonucleoproteins. Genes Cells 21, 370–377 (2016).

    Article  CAS  PubMed  Google Scholar 

  149. Liu, X. et al. In situ capture of chromatin interactions by biotinylated dCas9. Cell 170, 1028–1043.e19 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Myers, S. A. et al. Discovery of proteins associated with a predefined genomic locus via dCas9–APEX-mediated proximity labeling. Nat. Methods 15, 1 (2018).

    Article  CAS  Google Scholar 

  151. Tsui, C. et al. dCas9-targeted locus-specific protein isolation method identifies histone gene regulators. Proc. Natl Acad. Sci. USA 115, E2734–E2741 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Escobar, T. M. et al. Active and repressed chromatin domains exhibit distinct nucleosome segregation during DNA replication. Cell 179, 953–963.e11 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Zeng, H. & Gifford, D. K. Predicting the impact of non-coding variants on DNA methylation. Nucleic Acids Res. 45, e99 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Sandholtz, S. H., MacPherson, Q. & Spakowitz, A. J. Physical modeling of the heritability and maintenance of epigenetic modifications. Proc. Natl Acad. Sci. USA 117, 20423–20429 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Khoo, T. S. et al. Retention of somatic memory associated with cell identity, age and metabolism in induced pluripotent stem (iPS) cells Reprogramming. Stem Cell Rev. Rep. 16, 251–261 (2020).

    Article  PubMed  Google Scholar 

  156. Blanco, E., González-Ramírez, M., Alcaine-Colet, A., Aranda, S. & Di Croce, L. The bivalent genome: characterization, structure, and regulation. Trends Genet. 36, 118–131 (2020).

    Article  CAS  PubMed  Google Scholar 

  157. Zheng, Y. et al. CRISPR interference-based specific and efficient gene inactivation in the brain. Nat. Neurosci. 21, 447–454 (2018).

    Article  CAS  PubMed  Google Scholar 

  158. Kemaladewi, D. U. et al. A mutation-independent approach for muscular dystrophy via upregulation of a modifier gene. Nature 572, 125–130 (2019).

    Article  CAS  PubMed  Google Scholar 

  159. Böhm, S. et al. A gene therapy for inherited blindness using dCas9-VPR-mediated transcriptional activation. Sci. Adv. 6, eaba5614 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Mirabella, A. C., Foster, B. M. & Bartke, T. Chromatin deregulation in disease. Chromosoma 125, 75–93 (2016).

    Article  CAS  PubMed  Google Scholar 

  161. Jones, P. A., Issa, J.-P. J. & Baylin, S. Targeting the cancer epigenome for therapy. Nat. Rev. Genet. 17, 630–641 (2016).

    Article  CAS  PubMed  Google Scholar 

  162. Hwang, J.-Y., Aromolaran, K. A. & Zukin, R. S. The emerging field of epigenetics in neurodegeneration and neuroprotection. Nat. Rev. Neurosci. 18, 347–361 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Ling, C. & Rönn, T. Epigenetics in human obesity and type 2 diabetes. Cell Metab. 29, 1028–1044 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. McIntyre, R. L., Daniels, E. G., Molenaars, M., Houtkooper, R. H. & Janssens, G. E. From molecular promise to preclinical results: HDAC inhibitors in the race for healthy aging drugs. EMBO Mol. Med. 11, e9854 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. Abbott, T. R. et al. Development of CRISPR as an antiviral strategy to combat SARS-CoV-2 and influenza. Cell 181, 865–876.e12 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

M.N. was supported by the Stanford School of Medicine Dean’s Postdoctoral Fellowship. Y.G. was supported by the National Science Foundation Graduate Research Fellowship Program. A.A.D. was supported by an ALS Association Milton Safenowitz Fellowship and the Burroughs Wellcome Fund Postdoctoral Enrichment Program. L.S.Q. acknowledges support from the Pew Charitable Trusts, the Alfred P. Sloan Foundation and the Li Ka Shing Foundation. This work was supported by the Li Ka Shing Foundation and partly supported by the National Institutes of Health Common Fund 4D Nucleome Program (U01 DK127405).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei S. Qi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Cell Biology thanks Ophir Shalem, Stefan Stricker and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakamura, M., Gao, Y., Dominguez, A.A. et al. CRISPR technologies for precise epigenome editing. Nat Cell Biol 23, 11–22 (2021). https://doi.org/10.1038/s41556-020-00620-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41556-020-00620-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing