Skip to main content

Advertisement

Log in

A Visual and Ratiometric Chemosensor Using Thiophene Functionalized Hydrazone for the Selective Sensing of Pb2+ and F Ions

  • Original Article
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Herein, a simple, efficient ratiometric chemosensor was reported for the selective sensing of Pb2+ and F ions using thiophene functionalized hydrazone as a chemical probe. Hydrazone moiety was developed by utilizing thiophene/naphthalene as a platform for the particular recognition of cation and anion. The structures of the precursor (Z)-(1-(5-bromothiophen-2-yl)ethylidene)hydrazine (ABTH) and the final probe 1-((Z)-(((Z)-1-(5-bromothiophen-2-yl)ethylidene)hydrazono)methyl)naphthalen-2-ol (NAPABTH) were confirmed by 1H, 13C-NMR and LC-MS spectroscopic methods. The interaction of NAPABTH with Pb2+ and F ions was visually observed by the formation of pink and dark yellow solutions, respectively. The detection limits were found to be very low for Pb2+ as 1.06 ppm and for F ions as 3.72 nM. This visual detection of Pb2+/F ions with satisfactory outcomes obtained from UV-Vis titrations. The sensing mechanistic pathways and stoichiometric ratios were obtained from DFT and Job’s plot, respectively. The observed results are highly promising as highly selective chemosensor with lower detection limits for Pb2+ and F ions. This strategy could exhibit tremendous applications for the selective sensing of heavy metal cations with rapid sensitivity for the design of new devices.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme. 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The authors have no any objection for availability of data and materials.

References

  1. You J, Kim J, Park T, Kim B, Kim E (2012) Highly fluorescent conjugated polyelectrolyte nanostructures: synthesis, self-assembly, and Al3+ ion sensing. Adv Funct Mater 22:1417–1424. https://doi.org/10.1002/adfm.201102309

    Article  CAS  Google Scholar 

  2. Xu Y, Zhang C, Lu P, Zhang X, Zhang L, Shi J (2017) Overcoming poisoning effects of heavy metal ions against photocatalysis for synergetic photo-hydrogen generation from wastewater. Nano Energy 38:494–503. https://doi.org/10.1016/j.nanoen.2017.06.019

    Article  CAS  Google Scholar 

  3. Yeung MC-L, Yam VW-W (2015) Luminescent cation sensors: from host–guest chemistry, supramolecular chemistry to reaction-based mechanisms. Chem Soc Rev 44:4192–4202. https://doi.org/10.1039/C4CS00391H

    Article  CAS  PubMed  Google Scholar 

  4. Aragay G, Pons J, Merkoçi A (2011) Recent trends in macro-, micro-, and nanomaterial-based tools and strategies for heavy-metal detection. Chem Rev 111:3433–3458. https://doi.org/10.1021/cr100383r

    Article  CAS  PubMed  Google Scholar 

  5. He W, Luo L, Liu Q, Chen Z (2018) Colorimetric sensor Array for discrimination of heavy metal ions in aqueous solution based on three kinds of Thiols as receptors. Anal Chem 90:4770–4775. https://doi.org/10.1021/acs.analchem.8b00076

    Article  CAS  PubMed  Google Scholar 

  6. Zhu X, Xie H, Liang X, Li X, Duan J, Chen Y, Yang Z, Liu C, Wang C, Zhang H, Fang Q, Sun H, Li C, Li Y, Wang C, Song C, Zeng Y, Yang J (2017) Bilayered nanoparticles with sequential release of VEGF gene and Paclitaxel for restenosis inhibition in atherosclerosis. ACS Appl Mater Interfaces 9:27522–27532. https://doi.org/10.1021/acsami.7b08312

    Article  CAS  PubMed  Google Scholar 

  7. Sun T, Niu Q, Guo Z, Li T (2017) A simple highly sensitive and selective turn-on fluorescent chemosensor for the recognition of Pb2+. Tetrahedron Lett 58:252–256. https://doi.org/10.1016/j.tetlet.2016.12.022

    Article  CAS  Google Scholar 

  8. Sánchez S, Aguilar RP, Genta S, Aybar M, Villecco E, Riera AS (2001) Renal extracellular matrix alterations in lead-treated rats. J Appl Toxicol 21:417–423. https://doi.org/10.1002/jat.775

    Article  PubMed  Google Scholar 

  9. Daggett DA, Nuwaysir EF, Nelson SA, Wright LS, Kornguth SE, Siegel FL (1997) Effects of triethyl lead administration on the expression of glutathione S-transferase isoenzymes and quinone reductase in rat kidney and liver. Toxicology 117:61–71. https://doi.org/10.1016/S0300-483X(96)03555-X

    Article  CAS  PubMed  Google Scholar 

  10. Gennart J-P, Bernard A, Lauwerys R (1992) Assessment of thyroid, testes, kidney and autonomic nervous system function in lead-exposed workers. Int Arch Occup Environ Health 64:49–57. https://doi.org/10.1007/BF00625951

    Article  CAS  PubMed  Google Scholar 

  11. Needleman H (2004) Lead poisoning. Annu Rev Med 55:209–222. https://doi.org/10.1146/annurev.med.55.091902.103653

    Article  CAS  PubMed  Google Scholar 

  12. Ferreira de Mattos G, Costa C, Savio F, Alonso M, Nicolson GL (2017) Lead poisoning: acute exposure of the heart to lead ions promotes changes in cardiac function and Cav1.2 ion channels. Biophys Rev 9:807–825. https://doi.org/10.1007/s12551-017-0303-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lidsky TI, Schneider JS (2003) Lead neurotoxicity in children: basic mechanisms and clinical correlates. Brain 126:5–19. https://doi.org/10.1093/brain/awg014

    Article  PubMed  Google Scholar 

  14. Feng B, Zhu R, Xu S, Chen Y, di J (2018) A sensitive LSPR sensor based on glutathione-functionalized gold nanoparticles on a substrate for the detection of Pb2+ ions. RSC Adv 8:4049–4056. https://doi.org/10.1039/C7RA13127E

    Article  CAS  Google Scholar 

  15. Azadbakht R, Hakimi M, Khanabadi J, Amiri Rudbari H (2017) A new macrocyclic ligand as a turn-on fluorescent chemosensor for the recognition of Pb2+ ions. New J Chem 41:12198–12204. https://doi.org/10.1039/C7NJ02873C

    Article  CAS  Google Scholar 

  16. Kalahasthi RB, Barman T, Rajmohan HR (2014) The relationship between blood lead levels and morbidities among workers employed in a factory manufacturing lead–acid storage battery. Int J Environ Health Res 24:246–255. https://doi.org/10.1080/09603123.2013.809702

    Article  CAS  PubMed  Google Scholar 

  17. Sunnapu O, Kotla NG, Maddiboyina B, Singaravadivel S, Sivaraman G (2016) A rhodamine based “turn-on” fluorescent probe for Pb(ii) and live cell imaging. RSC Adv 6:656–660. https://doi.org/10.1039/C5RA20482H

    Article  CAS  Google Scholar 

  18. Liu J, Wu K, Li S, Song T, Han Y, Li X (2013) A highly sensitive and selective fluorescent chemosensor for Pb2+ ions in an aqueous solution. Dalton Trans 42:3854–3859. https://doi.org/10.1039/C2DT32531D

    Article  CAS  PubMed  Google Scholar 

  19. Zhou M, Tian W, Zhang J, Chen X, Wu YX, Wang SX (2019) A rapid on-site analysis method for the simultaneous extraction and determination of Pb2+ and Cd2+ in cereals. RSC Adv 9:32839–32847. https://doi.org/10.1039/C9RA05587H

    Article  CAS  Google Scholar 

  20. (1996) Assessment of Potential Health Risks Associated with Ingesting Heavy Metals in Fish Collected from a Hazardous-Waste Contaminated Wetland in Louisiana, USA . Rev. Environ. Heal. 11:191

  21. Chen P, Bai W, Bao Y (2019) Fluorescent chemodosimeters for fluoride ions via silicon-fluorine chemistry: 20 years of progress. J Mater Chem C 7:11731–11746. https://doi.org/10.1039/C9TC04567H

    Article  CAS  Google Scholar 

  22. Kim SK, Yoon J (2002) A new fluorescent PET chemosensor for fluoride ions. Chem Commun:770–771. https://doi.org/10.1039/B110139K

  23. Harshavardhan S, Rajadas SE, Vijayakumar KK et al (2019) Electrochemical Immunosensors. Bioelectrochem Interf Eng:343–369

  24. Zhang F, Zhao Y, Chi Y, Ma Y, Jiang T, Wei X, Zhao Q, Shi Z, Shi J (2018) Novel fluorescent probes for the fluoride anion based on hydroxy-substituted perylene tetra-(alkoxycarbonyl) derivatives. RSC Adv 8:14084–14091. https://doi.org/10.1039/c8ra00299a

    Article  CAS  Google Scholar 

  25. Mahapatra AK, Maji R, Maiti K, Adhikari SS, Mukhopadhyay CD, Mandal D (2014) Ratiometric sensing of fluoride and acetate anions based on a BODIPY-azaindole platform and its application to living cell imaging. Analyst 139:309–317. https://doi.org/10.1039/C3AN01663C

    Article  CAS  PubMed  Google Scholar 

  26. Chen Y, Bai B, Chai Q, Zhang M, Wei J, Wang H, Li M (2019) A colorimetric and fluorescent sensor for the detection of both fluoride ions and trifluoroacetic acid based on acylhydrazone derivatives. Soft Matter 15:6690–6695. https://doi.org/10.1039/c9sm01394f

    Article  CAS  PubMed  Google Scholar 

  27. Saha S, Ghosh A, Mahato P, Mishra S, Mishra SK, Suresh E, Das S, Das A (2010) Specific recognition and sensing of CN− in sodium cyanide solution. Org Lett 12:3406–3409. https://doi.org/10.1021/ol101281x

    Article  CAS  PubMed  Google Scholar 

  28. Chen X-Y, Wen M-W, Ye S, Wang Z-X (2011) Unusual formal [4 + 2] Cycloaddition of ethyl Allenoate with Arylidenoxindoles: synthesis of Dihydropyran-fused Indoles. Org Lett 13:1138–1141. https://doi.org/10.1021/ol103165y

    Article  CAS  PubMed  Google Scholar 

  29. Pang X, Li L, Wei Y, Yu X, Li Y (2018) Novel luminescent lanthanide(iii) hybrid materials: fluorescence sensing of fluoride ions and N,N-dimethylformamide. Dalton Trans 47:11530–11538. https://doi.org/10.1039/C8DT02404A

    Article  CAS  PubMed  Google Scholar 

  30. Sen C, Dey S, Patra C, Mallick D, Sinha C (2019) Use of the fluorogenic Al3+−quinolinyl-azo-naphtholato complex for the determination of F− in aqueous medium by visible light excitation and application in ground water fluoride analysis. Anal Methods 11:4440–4449. https://doi.org/10.1039/C9AY01418G

    Article  CAS  Google Scholar 

  31. Mandinic Z, Curcic M, Antonijevic B, Carevic M, Mandic J, Djukic-Cosic D, Lekic CP (2010) Fluoride in drinking water and dental fluorosis. Sci Total Environ 408:3507–3512. https://doi.org/10.1016/j.scitotenv.2010.04.029

    Article  CAS  PubMed  Google Scholar 

  32. Wade CR, Broomsgrove AEJ, Aldridge S, Gabbaï FP (2010) Fluoride ion Complexation and sensing using Organoboron compounds. Chem Rev 110:3958–3984. https://doi.org/10.1021/cr900401a

    Article  CAS  PubMed  Google Scholar 

  33. Huang Z, Chen J, Luo Z, Wang X, Duan Y (2019) Label-free and enzyme-free colorimetric detection of Pb2+ based on RNA cleavage and annealing-accelerated hybridization chain reaction. Anal Chem 91:4806–4813. https://doi.org/10.1021/acs.analchem.9b00410

    Article  CAS  PubMed  Google Scholar 

  34. Santos-Figueroa LE, Moragues ME, Climent E, Agostini A, Martínez-Máñez R, Sancenón F (2013) Chromogenic and fluorogenic chemosensors and reagents for anions. A comprehensive review of the years 2010–2011. Chem Soc Rev 42:3489–3613. https://doi.org/10.1039/C3CS35429F

    Article  CAS  PubMed  Google Scholar 

  35. Gale PA, Howe ENW, Wu X (2016) Anion receptor chemistry. Chem 1:351–422. https://doi.org/10.1016/j.chempr.2016.08.004

    Article  CAS  Google Scholar 

  36. Ghaedi M, Shokrollahi A, Niknam K, Niknam E, Najibi A, Soylak M (2009) Cloud point extraction and flame atomic absorption spectrometric determination of cadmium(II), lead(II), palladium(II) and silver(I) in environmental samples. J Hazard Mater 168:1022–1027. https://doi.org/10.1016/j.jhazmat.2009.02.130

    Article  CAS  PubMed  Google Scholar 

  37. Ghaedi M, Ahmadi F, Soylak M (2007) Preconcentration and separation of nickel, copper and cobalt using solid phase extraction and their determination in some real samples. J Hazard Mater 147:226–231. https://doi.org/10.1016/j.jhazmat.2006.12.070

    Article  CAS  PubMed  Google Scholar 

  38. Wensing MW, Smith BW, Winefordner JD (1994) Capacitively coupled microwave plasma atomic emission spectrometer for the determination of lead in whole blood. Anal Chem 66:531–535. https://doi.org/10.1021/ac00076a018

    Article  CAS  PubMed  Google Scholar 

  39. Reuther R, Jaeger L, Allard B (1999) Determination of organometallic forms of mercury, tin and lead by in situ derivatization, trapping and gas chromatography – atomic emission detection. Anal Chim Acta 394:259–269. https://doi.org/10.1016/S0003-2670(99)00310-4

    Article  CAS  Google Scholar 

  40. Ho SK, Cheung NH (2005) Sub-part-per-billion analysis of aqueous Lead colloids by ArF laser induced atomic fluorescence. Anal Chem 77:193–199. https://doi.org/10.1021/ac048764a

    Article  CAS  PubMed  Google Scholar 

  41. Zhou Q, Zhang X, Xie G (2011) Simultaneous analysis of phthalate esters and pyrethroid insecticides in water samples by temperature-controlled ionic liquid dispersive liquid-phase microextraction combined with high-performance liquid chromatography. Anal Methods 3:1815–1820. https://doi.org/10.1039/C1AY05137G

    Article  CAS  Google Scholar 

  42. Serpell CJ, Rutte RN, Geraki K, Pach E, Martincic M, Kierkowicz M, de Munari S, Wals K, Raj R, Ballesteros B, Tobias G, Anthony DC, Davis BG (2016) Carbon nanotubes allow capture of krypton, barium and lead for multichannel biological X-ray fluorescence imaging. Nat Commun 7:13118. https://doi.org/10.1038/ncomms13118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhang J, Tian S, Lu L, Shohag MJI, Liao H, Yang X (2011) Lead tolerance and cellular distribution in Elsholtzia splendens using synchrotron radiation micro-X-ray fluorescence. J Hazard Mater 197:264–271. https://doi.org/10.1016/j.jhazmat.2011.09.085

    Article  CAS  PubMed  Google Scholar 

  44. Luo R, Su X, Xu W, Zhang S, Zhuo X, Ma D (2017) Determination of arsenic and lead in single hair strands by laser ablation inductively coupled plasma mass spectrometry. Sci Rep 7:3426. https://doi.org/10.1038/s41598-017-03660-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Moens L, De Smaele T, Dams R et al (1997) Sensitive, simultaneous determination of Organomercury, −lead, and -tin compounds with headspace solid phase microextraction capillary gas chromatography combined with inductively coupled plasma mass spectrometry. Anal Chem 69:1604–1611. https://doi.org/10.1021/ac960905o

    Article  CAS  Google Scholar 

  46. Anbu Durai W, Ramu A (2020) Hydrazone based dual – responsive colorimetric and Ratiometric Chemosensor for the detection of Cu2+/F− ions: DNA tracking, practical performance in environmental samples and tooth paste. J Fluoresc 30:275–289. https://doi.org/10.1007/s10895-020-02488-0

    Article  CAS  PubMed  Google Scholar 

  47. Patani GA, LaVoie EJ (1996) Bioisosterism: a rational approach in drug design. Chem Rev 96:3147–3176. https://doi.org/10.1021/cr950066q

    Article  CAS  PubMed  Google Scholar 

  48. Su X, Aprahamian I (2014) Hydrazone-based switches, metallo-assemblies and sensors. Chem Soc Rev 43:1963–1981. https://doi.org/10.1039/C3CS60385G

    Article  CAS  PubMed  Google Scholar 

  49. Xu P, Li W, Xie J, Zhu C (2018) Exploration of C–H transformations of aldehyde Hydrazones: radical strategies and beyond. Acc Chem Res 51:484–495. https://doi.org/10.1021/acs.accounts.7b00565

    Article  CAS  PubMed  Google Scholar 

  50. Farshbaf S, Anzenbacher P (2019) Fluorimetric sensing of ATP in water by an imidazolium hydrazone based sensor. Chem Commun 55:1770–1773. https://doi.org/10.1039/C8CC09857C

    Article  CAS  Google Scholar 

  51. Wang Y-T, Hu S, Zhang Y, Gong H, Sun R, Mao W, Wang DH, Chen Y (2018) A colorimetric Pb2+ chemosensor: rapid naked-eye detection, high selectivity, theoretical insights, and applications. J Photochem Photobiol A Chem 355:101–108. https://doi.org/10.1016/j.jphotochem.2017.10.027

    Article  CAS  Google Scholar 

  52. Rout K, Manna AK, Sahu M, Mondal J, Singh SK, Patra GK (2019) Triazole-based novel bis Schiff base colorimetric and fluorescent turn-on dual chemosensor for Cu2+ and Pb2+: application to living cell imaging and molecular logic gates. RSC Adv 9:25919–25931. https://doi.org/10.1039/C9RA03341F

    Article  CAS  Google Scholar 

  53. Anbu Durai W, Ramu A, Dhakshinamoorthy A (2020) A chromogenic and fluorescence turn-on sensor for the selective and sensitive recognition of Al3+ ions – a new approach by Schiff base derivative as probe. Inorg Chem Commun 121:108191. https://doi.org/10.1016/j.inoche.2020.108191

    Article  CAS  Google Scholar 

  54. Karachi N, Azadi O, Razavi R, Tahvili A, Parsaee Z (2018) Combinatorial experimental and DFT theoretical evaluation of a nano novel thio-dicarboxaldehyde based Schiff base supported on a thin polymer film as a chemosensor for Pb2+ detection. J Photochem Photobiol A Chem 360:152–165. https://doi.org/10.1016/j.jphotochem.2018.04.039

    Article  CAS  Google Scholar 

  55. Lu H, Quan S, Xu S (2017) Highly sensitive Ratiometric fluorescent sensor for trinitrotoluene based on the inner filter effect between gold nanoparticles and fluorescent nanoparticles. J Agric Food Chem 65:9807–9814. https://doi.org/10.1021/acs.jafc.7b03986

    Article  CAS  PubMed  Google Scholar 

  56. Anbu Durai W, Ramu A (2020) Development of colorimetric and turn-on fluorescence sensor for the detection of Al3+ and F− ions: DNA tracking and practical performance as applications. ChemistrySelect 5:4778–4785. https://doi.org/10.1002/slct.202000301

    Article  CAS  Google Scholar 

  57. Pati C, Ghosh K (2019) A 1,8-naphthalimide–pyridoxal conjugate as a supramolecular gelator for colorimetric read out of F− ions in solution, gel and solid states. New J Chem 43:2718–2725. https://doi.org/10.1039/C8NJ05626A

    Article  CAS  Google Scholar 

  58. Fu J, Chang Y, Li B, Mei H, Yang L, Xu K (2019) A novel fluorescent-colorimetric probe for Al3+ and Zn2+ ion detection with different response and applications in F− detection and cell imaging. Analyst 144:5706–5716. https://doi.org/10.1039/C9AN01295H

    Article  CAS  PubMed  Google Scholar 

  59. Alreja P, Kaur N (2019) “Test kit” of chromogenic and ratiometric 1,10-phenanthroline based chemosensor for the recognition of F− and CN– ions. Inorg Chem Commun 110:107600. https://doi.org/10.1016/j.inoche.2019.107600

    Article  CAS  Google Scholar 

  60. Yun D, Chae JB, Kim C (2019) A novel benzophenone-based colorimetric chemosensor for detecting \(\hbox {Cu}^{2+}\) and \(\hbox {F}^{−}\). J Chem Sci 131:10. https://doi.org/10.1007/s12039-018-1585-2

    Article  CAS  Google Scholar 

  61. Hossain SM, Lakma A, Pradhan RN, Chakraborty A, Biswas A, Singh AK (2015) Synthesis and characterization of a novel, ditopic, reversible and highly selective, “turn-on” fluorescent chemosensor for Al3+ ion. RSC Adv 5:63338–63344. https://doi.org/10.1039/C5RA12040C

    Article  CAS  Google Scholar 

  62. Liu B, Tian H (2005) A ratiometric fluorescent chemosensor for fluoride ions based on a proton transfer signaling mechanism. J Mater Chem 15:2681–2686. https://doi.org/10.1039/B501234A

    Article  CAS  Google Scholar 

  63. Saini N, Wannasiri C, Chanmungkalakul S, Prigyai N, Ervithayasuporn V, Kiatkamjornwong S (2019) Furan/thiophene-based fluorescent hydrazones as fluoride and cyanide sensors. J Photochem Photobiol A Chem 385:112038. https://doi.org/10.1016/j.jphotochem.2019.112038

    Article  CAS  Google Scholar 

Download references

Acknowledgements

WAD extending his acknowledgement to School of Chemistry, Madurai Kamaraj University for providing adequate instrument facilities through DST-IRHPA, FIST, DST-PURSE and UGC-UPE schemes.

Funding

The authors have no relevant financial or non-financial interests to disclose.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed in the present study. All authors commented on this version of the manuscript and they read and approved the final manuscript.

Corresponding author

Correspondence to Andy Ramu.

Ethics declarations

Conflict of Interest

Authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• A simultaneous responsive detection of Pb2+/F- ions was achieved by utilizing a simple probe bearing thiophene based hydrazone derivative.

• The visual recognition can be seen through the color changes by the addition of Pb2+/F- ions with the probe.

• The detection limits were achieved and found to be very lower range for both Pb2+ and F- ions 1.06 ppm and 3.72 nM respectively.

• The sensing mechanistic pathway and stoichiometric ratios were explained and confirmed through DFT, Job’s plots analysis.

• A highly selective chemosensor with lower detection limits was designed, synthesized, characterized and presented.

Supplementary Information

ESM 1

(DOCX 1648 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anbu Durai, W., Ramu, A. & Dhakshinamoorthy, A. A Visual and Ratiometric Chemosensor Using Thiophene Functionalized Hydrazone for the Selective Sensing of Pb2+ and F Ions. J Fluoresc 31, 465–474 (2021). https://doi.org/10.1007/s10895-020-02673-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-020-02673-1

Keywords

Navigation