Skip to main content
Log in

MicroRNA-1246 regulates proliferation, invasion, and differentiation in human vascular smooth muscle cells by targeting cystic fibrosis transmembrane conductance regulator (CFTR)

  • Molecular and cellular mechanisms of disease
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

MicroRNA (miRNA) plays a key role in the proliferation and invasion of vascular smooth muscle cells (VSMCs). However, the role and underlying mechanism of miRNAs in VSMCs are not fully understood. Therefore, this study was designed to investigate the role and mechanism of microRNA-1246 (miR-1246) in VSMCs. VSMCs were cultured, and the proliferation of VSMCs was stimulated by platelet-derived growth factor (PDGF-BB) or 15% fetal bovine serum (FBS). The quantitative reverse transcription PCR (qRT-PCR) was used to detect the expression levels of miR-1246 and cystic fibrosis transmembrane conductance regulator (CFTR) in VSMCs. The CCK-8 assay and transwell assay were used to detect the proliferation and invasion of VSMCs. Target gene prediction and screening and luciferase reporter assays were used to verify downstream target genes of miR-1246. Western blotting was used to detect the protein expression levels of PCNA, α-SMA, SM-MHC, Collagen-1, and Cyclin D1 in VSMCs. PDGF-BB and FBS treatment induced VSMCs proliferation and the upregulation of miR-1246 expression. Overexpression of miR-1246 promoted VSMCs proliferation, invasion, and differentiation towards synthetic phenotype, while knockdown of miR-1246 had opposite effects. In addition, CFTR was found to be a direct target for miR-1246, and miR-1246 inhibited the expression of CFTR. Moreover, overexpression of CFTR inhibited VSMC proliferation and synthetic differentiation, while overexpression of miR-1246 partly abolished the effects of CFTR overexpression on VSMCs proliferation and differentiation. Our data suggest that MiR-1246 promotes VSMC proliferation, invasion, and differentiation to synthetic phenotype by regulating CFTR. MiR-1246 may be a potential therapeutic target for atherosclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Albinsson S, Sward K (2013) Targeting smooth muscle microRNAs for therapeutic benefit in vascular disease. Pharmacol Res 75:28–36. https://doi.org/10.1016/j.phrs.2013.04.003

    Article  CAS  PubMed  Google Scholar 

  2. Barranco C (2018) Atherosclerosis linked to faulty DNA repair in VSMCs. Nat Rev Cardiol 15:380. https://doi.org/10.1038/s41569-018-0021-0

    Article  PubMed  Google Scholar 

  3. Bonomini F, Taurone S, Parnigotto P, Zamai L, Rodella LF, Artico M, Rezzani R (2017) Role of parnaparin in atherosclerosis. Int J Exp Pathol 97:457–464

    Article  Google Scholar 

  4. Cai W-L, Huang W-D, Li B, Chen T-R, Li Z-X, Zhao C-L, Li H-Y, Wu Y-M, Yan W-J, Xiao J-R (2018) microRNA-124 inhibits bone metastasis of breast cancer by repressing Interleukin-11. Mol Cancer 17:9

    Article  Google Scholar 

  5. Cao Q, Jiang Y, Shi J, Xu C, Liu X, Yang T, Fu P, Niu T (2015) Artemisinin inhibits the proliferation, migration, and inflammatory reaction induced by tumor necrosis factor-α in vascular smooth muscle cells through nuclear factor kappa B pathway. J Surg Res 194:667–678. https://doi.org/10.1016/j.jss.2014.12.013

    Article  CAS  PubMed  Google Scholar 

  6. Chen Q, Lin G, Huang J, Chen G, Huang X, Lin Q (2018) Expression profile of long non-coding RNAs in rat models of OSA-induced cardiovascular disease: new insight into pathogenesis. Sleep Breath 23:795–804. https://doi.org/10.1007/s11325-018-1753-0

    Article  PubMed  Google Scholar 

  7. Cheng CI, Lee YH, Chen PH, Lin YC, Chou MH, Kao YH (2017) Free fatty acids induce autophagy and LOX-1 upregulation in cultured aortic vascular smooth muscle cells. J Cell Biochem 118:1249–1261. https://doi.org/10.1002/jcb.25784

    Article  CAS  PubMed  Google Scholar 

  8. Emini Veseli B, Perrotta P, De Meyer GRA, Roth L, Van der Donckt C, Martinet W, De Meyer GRY (2017) Animal models of atherosclerosis. Eur J Pharmacol 816:3–13. https://doi.org/10.1016/j.ejphar.2017.05.010

    Article  CAS  PubMed  Google Scholar 

  9. Gebert LFR, MacRae IJ (2019) Regulation of microRNA function in animals. Nat Rev Mol Cell Biol 20:21–37. https://doi.org/10.1038/s41580-018-0045-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gelfond D, Heltshe S, Ma C, Rowe SM, Frederick C, Uluer A, Sicilian L, Konstan M, Tullis E, Roach RN, Griffin K, Joseloff E, Borowitz D (2017) Impact of CFTR modulation on intestinal pH, motility, and clinical outcomes in patients with cystic fibrosis and the G551D mutation. Clin Transl Gastroenterol 8:e81. https://doi.org/10.1038/ctg.2017.10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gerdts V, Wilson HL, Meurens F, van Drunen Littel-van den Hurk S, Wilson D, Walker S, Wheler C, Townsend H, Potter AA (2015) Large animal models for vaccine development and testing. ILAR J 56:53–62. https://doi.org/10.1093/ilar/ilv009

    Article  CAS  PubMed  Google Scholar 

  12. Gokce A, Gul D, Halis F, Cimen HI (2017) P19 - M470V polymorphism in the cystic fibrosis transmembrane conductance regulator (CFTR) gene and male infertility. Eur Urol Suppl 16:e3011. https://doi.org/10.1016/S1569-9056(17)32139-5

    Article  Google Scholar 

  13. Gwozdz T, Dorey K (2017) Western blot. In: TALALI M,SALDANHA F YL,JALALI M. Basic Science Methods for Clinical Researchers. Academic Press. 99-117.

  14. Huhtinen A, Hongisto V, Laiho A, Loyttyniemi E, Pijnenburg D, Scheinin M (2017) Gene expression profiles and signaling mechanisms in alpha2B-adrenoceptor-evoked proliferation of vascular smooth muscle cells. BMC Syst Biol 11:65. https://doi.org/10.1186/s12918-017-0439-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kelnar K, Bader AG (2015) A qRT-PCR method for determining the biodistribution profile of a miR-34a mimic. Methods Mol Biol 1317:125–133. https://doi.org/10.1007/978-1-4939-2727-2_8

    Article  PubMed  Google Scholar 

  16. Kiyan Y, Fuhrman B, Haller H, Dumler I (2014) Vascular aging: revealing the role and clinical perspectives of the urokinase system. In: Leist A., Kulmala J., Nyqvist F. (eds) Health and Cognition in Old Age. International Perspectives on Aging, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-319-06650-9_2

  17. Kym PR, Wang X, Pizzonero M, Van der Plas SE (2018) Recent progress in the discovery and development of small-molecule modulators of CFTR. Prog Med Chem 57:235–276. https://doi.org/10.1016/bs.pmch.2018.01.001

    Article  PubMed  Google Scholar 

  18. Lee YT, Lin HY, Chan YW, Li KH, To OT, Yan BP, Liu T, Li G, Wong WT, Keung W, Tse G (2017) Mouse models of atherosclerosis: a historical perspective and recent advances. Lipids Health Dis 16:12. https://doi.org/10.1186/s12944-016-0402-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lehners M, Dobrowinski H, Feil S, Feil R (2018) cGMP signaling and vascular smooth muscle cell plasticity. J Cardiovasc Dev Dis 5. https://doi.org/10.3390/jcdd5020020

  20. Li W, Wang C, Peng X, Zhang H, Huang H, Liu H (2018) CFTR inhibits the invasion and growth of esophageal cancer cells by inhibiting the expression of NF-κB. Cell Biol Int 42:1680–1687. https://doi.org/10.1002/cbin.11069

    Article  CAS  PubMed  Google Scholar 

  21. Li XJ, Ren ZJ, Tang JH, Yu Q (2017) Exosomal microRNA MiR-1246 promotes cell proliferation, invasion and drug resistance by targeting CCNG2 in breast cancer. Cell Physiol Biochem 44:1741–1748. https://doi.org/10.1159/000485780

    Article  CAS  PubMed  Google Scholar 

  22. Lima C, Gomes C, Santos M (2017) Role of microRNAs in endocrine cancer metastasis. Mol Cell Endocrinol 456:62–75. https://doi.org/10.1016/j.mce.2017.03.015

    Article  CAS  PubMed  Google Scholar 

  23. Lin SS, Peng CY, Liao YW, Chou MY, Hsieh PL, Yu CC (2018) miR-1246 targets CCNG2 to enhance cancer stemness and chemoresistance in oral carcinomas. Cancers (Basel) 10:272. https://doi.org/10.3390/cancers10080272

  24. Meng X, Clews J, Kargas V, Wang X, Ford RC (2017) The cystic fibrosis transmembrane conductance regulator (CFTR) and its stability. Cell Mol Life Sci 74:23–38. https://doi.org/10.1007/s00018-016-2386-8

    Article  CAS  PubMed  Google Scholar 

  25. Pan J, Lu L, Wang X, Liu D, Tian J, Liu H, Zhang M, Xu F, An F (2018) AIM2 regulates vascular smooth muscle cell migration in atherosclerosis. Biochem Biophys Res Commun 497:S0006291X18303231

    Article  Google Scholar 

  26. Peitzman ER, Gradworks T (2014) Adrenergic regulation of CFTR-dependent anion secretion and cell migration in airway epithelial cells. Dissertations

  27. Ran L-J, Liang J, Deng X (2017) MicroRNAs regulate hepatic fibrosis via TGF-β/Smad pathway. World Chinese Journal of Digestology 25:166. https://doi.org/10.11569/wcjd.v25.i2.166

    Article  Google Scholar 

  28. Saint-Criq V, Gray MA (2017) Role of CFTR in epithelial physiology. Cell Mol Life Sci 74:93–115. https://doi.org/10.1007/s00018-016-2391-y

    Article  CAS  PubMed  Google Scholar 

  29. Tian H, Ketova T, Hardy D, Xu X, Gao X, Zijlstra A, Blobe GC (2017) Endoglin mediates vascular maturation by promoting vascular smooth muscle cell migration and spreading. Arterioscler Thromb Vasc Biol 37:1115–1126. https://doi.org/10.1161/ATVBAHA.116.308859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang H, Jiang M, Xu Z, Huang H, Gong P, Zhu H, Ruan C (2015) miR-146b-5p promotes VSMC proliferation and migration. Int J Clin Exp Pathol 8:12901–12907

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Wu K, He J, Pu W, Peng Y (2018) The role of exportin-5 in microRNA biogenesis and cancer. Genom Proteom Bioinf 16:120–126. https://doi.org/10.1016/j.gpb.2017.09.004

  32. Wu Z, Li J, Zhang Y, Hu L, Peng X (2020) CFTR regulates the proliferation, migration and invasion of cervical cancer cells by inhibiting the NF-kappaB signalling pathway. Cancer Manag Res 12:4685–4697. https://doi.org/10.2147/CMAR.S252296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Xiao XL, Hu N, Zhang XZ, Jiang M, Chen C, Ma R, Ma ZG, Gao JL, Xuan XC, Sun ZJ, Dong DL (2018) Niclosamide inhibits vascular smooth muscle cell proliferation and migration and attenuates neointimal hyperplasia in injured rat carotid arteries. Br J Pharmacol 175:1707–1718. https://doi.org/10.1111/bph.14182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Xie C, Jiang XH, Zhang JT, Sun TT, Dong JD, Sanders AJ, Diao RY, Wang Y, Fok KL, Tsang LL, Yu MK, Zhang XH, Chung YW, Ye L, Zhao MY, Guo JH, Xiao ZJ, Lan HY, Ng CF, Lau KM, Cai ZM, Jiang WG, Chan HC (2013) CFTR suppresses tumor progression through miR-193b targeting urokinase plasminogen activator (uPA) in prostate cancer. Oncogene 32:2282–2291, 2291 e2281-2287. https://doi.org/10.1038/onc.2012.251

    Article  CAS  PubMed  Google Scholar 

  35. Yang F, Chen Q, He S, Yang M, Maguire EM, An W, Afzal TA, Luong LA, Zhang L, Xiao Q (2018) miR-22 is a novel mediator of vascular smooth muscle cell phenotypic modulation and neointima formation. Circulation 137:1824–1841. https://doi.org/10.1161/CIRCULATIONAHA.117.027799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yang F, Xiao Q (2016) 197 miRNA-22 regulates vascular smooth muscle cell functions and prevents neointima formation by targeting EVI-1. Heart 102:A132.133–A132A133

    Google Scholar 

  37. Ying SY, Chang DC, Lin SL (2013) The microRNA. Methods Mol Biol 936:1–19. https://doi.org/10.1007/978-1-62703-083-0_1

    Article  CAS  PubMed  Google Scholar 

  38. Zafari S, Backes C, Leidinger P, Meese E, Keller A (2015) Regulatory microRNA networks: complex patterns of target pathways for disease-related and housekeeping microRNAs. Genomics Proteomics Bioinformatics 13:159–168. https://doi.org/10.1016/j.gpb.2015.02.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang JR, Lu QB, Feng WB, Wang HP, Tang ZH, Cheng H, Du Q, Wang YB, Li KX, Sun HJ (2018) Nesfatin-1 promotes VSMC migration and neointimal hyperplasia by upregulating matrix metalloproteinases and downregulating PPARgamma. Biomed Pharmacother 102:711–717. https://doi.org/10.1016/j.biopha.2018.03.120

    Article  CAS  PubMed  Google Scholar 

  40. Zhang Q, Cao LY, Cheng SJ, Zhang AM, Jin XS, Li Y (2015) p53-induced microRNA-1246 inhibits the cell growth of human hepatocellular carcinoma cells by targeting NFIB. Oncol Rep 33:1335–1341. https://doi.org/10.3892/or.2015.3715

    Article  CAS  PubMed  Google Scholar 

  41. Zhen X (2016) Analysis of the expression of miRNAs and downstream target genes in gastric cancer tissue and exploration of its relationship with clinicopathologic stage. J Hainan Med Univ 22:5–8

    Google Scholar 

  42. Zhou X, Du YL, Jin P, Ma F (2015) Bioinformatic analysis of cancer-related microRNAs and their target genes. Yi Chuan 37:855–864. https://doi.org/10.16288/j.yczz.14-439

    Article  CAS  PubMed  Google Scholar 

  43. Zou Y, Chen Z, Jennings BL, Zhao G, Gu Q, Bhattacharya A, Cui Y, Yu B, Malik KU, Yue J (2018) Deletion of DGCR8 in VSMCs of adult mice results in loss of vascular reactivity, reduced blood pressure and neointima formation. Sci Rep 8:1468. https://doi.org/10.1038/s41598-018-19660-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diguang Pan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval and consent to participate

Not applicable.

Informed consent

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A Commentary to this article is available online at https://doi.org/10.1007/s00424-021-02516-3

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, D., Liu, G., Li, B. et al. MicroRNA-1246 regulates proliferation, invasion, and differentiation in human vascular smooth muscle cells by targeting cystic fibrosis transmembrane conductance regulator (CFTR). Pflugers Arch - Eur J Physiol 473, 231–240 (2021). https://doi.org/10.1007/s00424-020-02498-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-020-02498-8

Keywords

Navigation