Skip to main content

Advertisement

Log in

Increasing whole-body energetic stress does not augment fasting-induced changes in human skeletal muscle

  • Muscle physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Fasting rapidly (≤ 6 h) activates mitochondrial biogenic pathways in rodent muscle, an effect that is absent in human muscle following prolonged (10–72 h) fasting. We tested the hypotheses that fasting-induced changes in human muscle occur shortly after food withdrawal and are modulated by whole-body energetic stress. Vastus lateralis biopsies were obtained from ten healthy males before, during (4 h), and after (8 h) two supervised fasts performed with (FAST+EX) or without (FAST) 2 h of arm ergometer exercise (~ 400 kcal of added energy expenditure). PGC-1α mRNA (primary outcome measure) was non-significantly reduced (p = 0.065 [ηp2 = 0.14]) whereas PGC-1α protein decreased (main effect of time: p < 0.01) during both FAST and FAST+EX. P53 acetylation increased in both conditions (main effect of time: p < 0.01) whereas ACC and SIRT1 phosphorylation were non-significantly decreased (both p < 0.06 [ηp2 = 0.15]). Fasting-induced increases in NFE2L2 and NRF1 protein were observed (main effects of time: p < 0.03), though TFAM and COXIV protein remained unchanged (p > 0.05). Elevating whole-body energetic stress blunted the increase in p53 mRNA, which was apparent during FAST only (condition × time interaction: p = 0.04). Select autophagy/mitophagy regulators (LC3BI, LC3BII, BNIP3) were non-significantly reduced at the protein level (p ≤ 0.09 [ηp2 > 0.13]) but the LC3II:I ratio was unchanged (p > 0.05). PDK4 mRNA (p < 0.01) and intramuscular triglyceride content in type IIA fibers (p = 0.04) increased similarly during both conditions. Taken together, human skeletal muscle signaling, mRNA/protein expression, and substrate storage appear to be unaffected by whole-body energetic stress during the initial hours of fasting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Aquilano K, Baldelli S, Pagliei B, Cannata SM, Rotilio G, Ciriolo MR (2013) p53 orchestrates the PGC-1α-mediated antioxidant response upon mild redox and metabolic imbalance. Antioxid Redox Signal 18:386–399. https://doi.org/10.1089/ars.2012.4615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bak AM, Møller AB, Vendelbo MH, Nielsen TS, Viggers R, Rungby J, Pedersen SB, Jørgensen JOL, Jessen N, Møller N (2016) Differential regulation of lipid and protein metabolism in obese vs. lean subjects before and after a 72-h fast. Am J Physiol-Endocrinol Metab 311:E224–E235. https://doi.org/10.1152/ajpendo.00464.2015

    Article  PubMed  Google Scholar 

  3. Bak AM, Vendelbo MH, Christensen B, Viggers R, Bibby BM, Rungby J, Jørgensen JOL, Møller N, Jessen N (2018) Prolonged fasting-induced metabolic signatures in human skeletal muscle of lean and obese men. PLoS One 13:e0200817. https://doi.org/10.1371/journal.pone.0200817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bergstrom J (1975) Percutaneous needle biopsy of skeletal muscle in physiological and clinical research. Scand J Clin Lab Invest 35:609–616

    Article  CAS  Google Scholar 

  5. Birk JB, Wojtaszewski JFP (2006) Predominant α2/β2/γ3 AMPK activation during exercise in human skeletal muscle: differential AMPK trimer activation in muscle. J Physiol 577:1021–1032. https://doi.org/10.1113/jphysiol.2006.120972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bloemberg D, Quadrilatero J (2012) Rapid determination of myosin heavy chain expression in rat, mouse, and human skeletal muscle using multicolor immunofluorescence analysis. PLoS One 7:e35273. https://doi.org/10.1371/journal.pone.0035273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bloemberg D, Quadrilatero J (2019) Autophagy, apoptosis, and mitochondria: molecular integration and physiological relevance in skeletal muscle. Am J Phys Cell Phys 317:C111–C130. https://doi.org/10.1152/ajpcell.00261.2018

    Article  CAS  Google Scholar 

  8. Bujak AL, Crane JD, Lally JS, Ford RJ, Kang SJ, Rebalka IA, Green AE, Kemp BE, Hawke TJ, Schertzer JD, Steinberg GR (2015) AMPK activation of muscle autophagy prevents fasting-induced hypoglycemia and myopathy during aging. Cell Metab 21:883–890. https://doi.org/10.1016/j.cmet.2015.05.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cantó C, Auwerx J (2009) PGC-1alpha, SIRT1 and AMPK, an energy sensing network that controls energy expenditure. Curr Opin Lipidol 20:98–105. https://doi.org/10.1097/MOL.0b013e328328d0a4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cantó C, Gerhart-Hines Z, Feige JN, Lagouge M, Noriega L, Milne JC, Elliott PJ, Puigserver P, Auwerx J (2009) AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 458:1056–1060. https://doi.org/10.1038/nature07813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cantó C, Jiang LQ, Deshmukh AS, Mataki C, Coste A, Lagouge M, Zierath JR, Auwerx J (2010) Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle. Cell Metab 11:213–219. https://doi.org/10.1016/j.cmet.2010.02.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Caton PW, Holness MJ, Bishop-Bailey D, Sugden MC (2011) PPARα–LXR as a novel metabolostatic signalling axis in skeletal muscle that acts to optimize substrate selection in response to nutrient status. Biochem J 437:521–530. https://doi.org/10.1042/BJ20110702

    Article  CAS  PubMed  Google Scholar 

  13. Cerda-Kohler H, Henríquez-Olguín C, Casas M, Jensen TE, Llanos P, Jaimovich E (2018) Lactate administration activates the ERK1/2, mTORC1, and AMPK pathways differentially according to skeletal muscle type in mouse. Phys Rep 6:e13800. https://doi.org/10.14814/phy2.13800

    Article  CAS  Google Scholar 

  14. Chen ZP, McConell GK, Michell BJ, Snow RJ, Canny BJ, Kemp BE (2000) AMPK signaling in contracting human skeletal muscle: acetyl-CoA carboxylase and NO synthase phosphorylation. Am J Physiol Endocrinol Metab 279:E1202–E1206. https://doi.org/10.1152/ajpendo.2000.279.5.E1202

    Article  CAS  PubMed  Google Scholar 

  15. Chen Z-P, Stephens TJ, Murthy S, Canny BJ, Hargreaves M, Witters LA, Kemp BE, McConell GK (2003) Effect of exercise intensity on skeletal muscle AMPK signaling in humans. Diabetes 52:2205–2212. https://doi.org/10.2337/diabetes.52.9.2205

    Article  CAS  PubMed  Google Scholar 

  16. Cohen J (1988) Statistical power analysis for the behavioral sciences, 2nd edn. Lawrence Erlbaum Associates, Hillsdale

    Google Scholar 

  17. Crilly MJ, Tryon LD, Erlich AT, Hood DA (2016) The role of Nrf2 in skeletal muscle contractile and mitochondrial function. J Appl Physiol 121:730–740. https://doi.org/10.1152/japplphysiol.00042.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. de Lange P, Farina P, Moreno M, Ragni M, Lombardi A, Silvestri E, Burrone L, Lanni A, Goglia F (2006) Sequential changes in the signal transduction responses of skeletal muscle following food deprivation. FASEB J 20:2579–2581. https://doi.org/10.1096/fj.06-6025fje

    Article  CAS  PubMed  Google Scholar 

  19. Dethlefsen MM, Bertholdt L, Gudiksen A, Stankiewicz T, Bangsbo J, van Hall G, Plomgaard P, Pilegaard H (2018) Training state and skeletal muscle autophagy in response to 36 h of fasting. J Appl Physiol 125:1609–1619. https://doi.org/10.1152/japplphysiol.01146.2017

    Article  CAS  PubMed  Google Scholar 

  20. Edgett BA, Bonafiglia JT, Baechler BL, Quadrilatero J, Gurd BJ (2016) The effect of acute and chronic sprint-interval training on LRP130, SIRT3, and PGC-1 α expression in human skeletal muscle. Phys Rep 4:e12879. https://doi.org/10.14814/phy2.12879

    Article  CAS  Google Scholar 

  21. Edgett BA, Scribbans TD, Raleigh JP, Matusiak JBL, Boonstra K, Simpson CA, Perry CGR, Quadrilatero J, Gurd BJ (2016) The impact of a 48-h fast on SIRT1 and GCN5 in human skeletal muscle. Appl Physiol Nutr Metab Physiol Appl Nutr Metab 41:953–962. https://doi.org/10.1139/apnm-2016-0130

    Article  CAS  Google Scholar 

  22. Egan DF, Shackelford DB, Mihaylova MM, Gelino S, Kohnz RA, Mair W, Vasquez DS, Joshi A, Gwinn DM, Taylor R, Asara JM, Fitzpatrick J, Dillin A, Viollet B, Kundu M, Hansen M, Shaw RJ (2011) Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 331:456–461. https://doi.org/10.1126/science.1196371

    Article  CAS  PubMed  Google Scholar 

  23. Gibala MJ, McGee SL, Garnham AP, Howlett KF, Snow RJ, Hargreaves M (2009) Brief intense interval exercise activates AMPK and p38 MAPK signaling and increases the expression of PGC-1α in human skeletal muscle. J Appl Physiol 106:929–934. https://doi.org/10.1152/japplphysiol.90880.2008

    Article  CAS  PubMed  Google Scholar 

  24. Gordon JW, Rungi AA, Inagaki H, Hood DA (2001) Selected contribution: effects of contractile activity on mitochondrial transcription factor A expression in skeletal muscle. J Appl Physiol 90:389–396. https://doi.org/10.1152/jappl.2001.90.1.389

    Article  CAS  PubMed  Google Scholar 

  25. Gurd BJ (2011) Deacetylation of PGC-1α by SIRT1: importance for skeletal muscle function and exercise-induced mitochondrial biogenesis. Appl Physiol Nutr Metab Physiol Appl Nutr Metab 36:589–597. https://doi.org/10.1139/h11-070

    Article  CAS  Google Scholar 

  26. Handschin C, Rhee J, Lin J, Tarr PT, Spiegelman BM (2003) An autoregulatory loop controls peroxisome proliferator-activated receptor coactivator 1 expression in muscle. Proc Natl Acad Sci 100:7111–7116. https://doi.org/10.1073/pnas.1232352100

    Article  CAS  PubMed  Google Scholar 

  27. He C, Klionsky DJ (2009) Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet 43:67–93. https://doi.org/10.1146/annurev-genet-102808-114910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hoeks J, van Herpen NA, Mensink M, Moonen-Kornips E, van Beurden D, Hesselink MKC, Schrauwen P (2010) Prolonged fasting identifies skeletal muscle mitochondrial dysfunction as consequence rather than cause of human insulin resistance. Diabetes 59:2117–2125. https://doi.org/10.2337/db10-0519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Høgild ML, Gudiksen A, Pilegaard H, Stødkilde-Jørgensen H, Pedersen SB, Møller N, Jørgensen JOL, Jessen N (2019) Redundancy in regulation of lipid accumulation in skeletal muscle during prolonged fasting in obese men. Phys Rep 7:e14285. https://doi.org/10.14814/phy2.14285

    Article  CAS  Google Scholar 

  30. Islam H, Bonafiglia JT, Turnbull PC, Simpson CA, Perry CGR, Gurd BJ (2019) The impact of acute and chronic exercise on Nrf2 expression in relation to markers of mitochondrial biogenesis in human skeletal muscle. Eur J Appl Physiol 120:149–160. https://doi.org/10.1007/s00421-019-04259-7

    Article  PubMed  Google Scholar 

  31. Islam H, Edgett BA, Bonafiglia JT, Shulman T, Ma A, Quadrilatero J, Simpson CA, Gurd BJ (2019) Repeatability of exercise-induced changes in mRNA expression and technical considerations for qPCR analysis in human skeletal muscle. Exp Physiol 104:407–420. https://doi.org/10.1113/EP087401

    Article  CAS  PubMed  Google Scholar 

  32. Jäger S, Handschin C, St-Pierre J, Spiegelman BM (2007) AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha. Proc Natl Acad Sci U S A 104:12017–12022. https://doi.org/10.1073/pnas.0705070104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jamart C, Naslain D, Gilson H, Francaux M (2013) Higher activation of autophagy in skeletal muscle of mice during endurance exercise in the fasted state. Am J Physiol-Endocrinol Metab 305:E964–E974. https://doi.org/10.1152/ajpendo.00270.2013

    Article  CAS  PubMed  Google Scholar 

  34. Kulkarni SR, Donepudi AC, Xu J, Wei W, Cheng QC, Driscoll MV, Johnson DA, Johnson JA, Li X, Slitt AL (2014) Fasting induces nuclear factor E2-related factor 2 and ATP-binding cassette transporters via protein kinase A and sirtuin-1 in mouse and human. Antioxid Redox Signal 20:15–30. https://doi.org/10.1089/ars.2012.5082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Laker RC, Drake JC, Wilson RJ, Lira VA, Lewellen BM, Ryall KA, Fisher CC, Zhang M, Saucerman JJ, Goodyear LJ, Kundu M, Yan Z (2017) Ampk phosphorylation of Ulk1 is required for targeting of mitochondria to lysosomes in exercise-induced mitophagy. Nat Commun 8:548. https://doi.org/10.1038/s41467-017-00520-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lange P, Moreno M, Silvestri E, Lombardi A, Goglia F, Lanni A (2007) Fuel economy in food-deprived skeletal muscle: signaling pathways and regulatory mechanisms. FASEB J 21:3431–3441. https://doi.org/10.1096/fj.07-8527rev

    Article  CAS  PubMed  Google Scholar 

  37. Little JP, Safdar A, Cermak N, Tarnopolsky MA, Gibala MJ (2010) Acute endurance exercise increases the nuclear abundance of PGC-1α in trained human skeletal muscle. Am J Physiol-Regul Integr Comp Physiol 298:R912–R917. https://doi.org/10.1152/ajpregu.00409.2009

    Article  CAS  PubMed  Google Scholar 

  38. Lu B, Lee J, Nie X, Li M, Morozov YI, Venkatesh S, Bogenhagen DF, Temiakov D, Suzuki CK (2013) Phosphorylation of human TFAM in mitochondria impairs DNA binding and promotes degradation by the AAA+ Lon protease. Mol Cell 49:121–132. https://doi.org/10.1016/j.molcel.2012.10.023

    Article  CAS  PubMed  Google Scholar 

  39. Merry TL, Ristow M (2016) Nuclear factor erythroid-derived 2-like 2 (NFE2L2, Nrf2) mediates exercise-induced mitochondrial biogenesis and the anti-oxidant response in mice: NFE2L2 and mitochondrial biogenesis. J Physiol 594:5195–5207. https://doi.org/10.1113/JP271957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Miura S, Kawanaka K, Kai Y, Tamura M, Goto M, Shiuchi T, Minokoshi Y, Ezaki O (2007) An increase in murine skeletal muscle peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) mRNA in response to exercise is mediated by β-adrenergic receptor activation. Endocrinology 148:3441–3448. https://doi.org/10.1210/en.2006-1646

    Article  CAS  PubMed  Google Scholar 

  41. Mizushima N, Yamamoto A, Matsui M, Yoshimori T, Ohsumi Y (2004) In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol Biol Cell 15:1101–1111. https://doi.org/10.1091/mbc.e03-09-0704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Park SH, Gammon SR, Knippers JD, Paulsen SR, Rubink DS, Winder WW (2002) Phosphorylation-activity relationships of AMPK and acetyl-CoA carboxylase in muscle. J Appl Physiol 92:2475–2482. https://doi.org/10.1152/japplphysiol.00071.2002

    Article  CAS  PubMed  Google Scholar 

  43. Piantadosi CA, Carraway MS, Babiker A, Suliman HB (2008) Heme oxygenase-1 regulates cardiac mitochondrial biogenesis via Nrf2-mediated transcriptional control of nuclear respiratory Factor-1. Circ Res 103:1232–1240. https://doi.org/10.1161/01.RES.0000338597.71702.ad

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pilegaard H, Saltin B, Neufer PD (2003) Effect of short-term fasting and refeeding on transcriptional regulation of metabolic genes in human skeletal muscle. Diabetes 52:657–662. https://doi.org/10.2337/diabetes.52.3.657

    Article  CAS  PubMed  Google Scholar 

  45. Preobrazenski N, Islam H, Drouin PJ, Bonafiglia JT, Tschakovsky ME, Gurd BJ (2019) A novel gravity-induced blood flow restriction model augments ACC phosphorylation and PGC-1α mRNA in human skeletal muscle following aerobic exercise: a randomized crossover study. Appl Physiol Nutr Metab Physiol Appl Nutr Metab 45:641–649. https://doi.org/10.1139/apnm-2019-0641

    Article  CAS  Google Scholar 

  46. Scarpulla RC (2011) Metabolic control of mitochondrial biogenesis through the PGC-1 family regulatory network. Biochim Biophys Acta BBA - Mol Cell Res 1813:1269–1278. https://doi.org/10.1016/j.bbamcr.2010.09.019

    Article  CAS  Google Scholar 

  47. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3:1101–1108

    Article  CAS  Google Scholar 

  48. Schwalm C, Jamart C, Benoit N, Naslain D, Prémont C, Prévet J, Van Thienen R, Deldicque L, Francaux M (2015) Activation of autophagy in human skeletal muscle is dependent on exercise intensity and AMPK activation. FASEB J 29:3515–3526. https://doi.org/10.1096/fj.14-267187

    Article  CAS  PubMed  Google Scholar 

  49. Scribbans TD, Edgett BA, Vorobej K, Mitchell AS, Joanisse SD, Matusiak JBL, Parise G, Quadrilatero J, Gurd BJ (2014) Fibre-specific responses to endurance and low volume high intensity interval training: striking similarities in acute and chronic adaptation. PLoS One 9:e98119. https://doi.org/10.1371/journal.pone.0098119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Stannard SR, Thompson MW, Fairbairn K, Huard B, Sachinwalla T, Thompson CH (2002) Fasting for 72 h increases intramyocellular lipid content in nondiabetic, physically fit men. Am J Physiol-Endocrinol Metab 283:E1185–E1191. https://doi.org/10.1152/ajpendo.00108.2002

    Article  CAS  PubMed  Google Scholar 

  51. Stephens TJ, Chen Z-P, Canny BJ, Michell BJ, Kemp BE, McConell GK (2002) Progressive increase in human skeletal muscle AMPKα2 activity and ACC phosphorylation during exercise. Am J Physiol-Endocrinol Metab 282:E688–E694. https://doi.org/10.1152/ajpendo.00101.2001

    Article  CAS  PubMed  Google Scholar 

  52. Tsintzas K, Jewell K, Kamran M, Laithwaite D, Boonsong T, Littlewood J, Macdonald I, Bennett A (2006) Differential regulation of metabolic genes in skeletal muscle during starvation and refeeding in humans: metabolic genes and starvation in humans. J Physiol 575:291–303. https://doi.org/10.1113/jphysiol.2006.109892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Tunstall RJ, Mehan KA, Hargreaves M, Spriet LL, Cameron-Smith D (2002) Fasting activates the gene expression of UCP3 independent of genes necessary for lipid transport and oxidation in skeletal muscleq. Biochem Biophys Res Commun 294(2):301–8. https://doi.org/10.1016/S0006-291X(02)00473-4

    Article  CAS  PubMed  Google Scholar 

  54. Vaziri H, Dessain SK, Eaton EN, Imai S-I, Frye RA, Pandita TK, Guarente L, Weinberg RA (2001) hSIR2SIRT1 functions as an NAD-dependent p53 deacetylase. Cell 107:149–159. https://doi.org/10.1016/S0092-8674(01)00527-X

    Article  CAS  PubMed  Google Scholar 

  55. Vendelbo MH, Clasen BFF, Treebak JT, Møller L, Krusenstjerna-Hafstrøm T, Madsen M, Nielsen TS, Stødkilde-Jørgensen H, Pedersen SB, Jørgensen JOL, Goodyear LJ, Wojtaszewski JFP, Møller N, Jessen N (2012) Insulin resistance after a 72-h fast is associated with impaired AS160 phosphorylation and accumulation of lipid and glycogen in human skeletal muscle. Am J Physiol-Endocrinol Metab 302:E190–E200. https://doi.org/10.1152/ajpendo.00207.2011

    Article  CAS  PubMed  Google Scholar 

  56. Wijngaarden MA, van der Zon GC, van Dijk KW, Pijl H, Guigas B (2013) Effects of prolonged fasting on AMPK signaling, gene expression, and mitochondrial respiratory chain content in skeletal muscle from lean and obese individuals. Am J Physiol-Endocrinol Metab 304:E1012–E1021. https://doi.org/10.1152/ajpendo.00008.2013

    Article  CAS  PubMed  Google Scholar 

  57. Wijngaarden MA, Bakker LEH, van der Zon GC, ’t Hoen PAC, van Dijk KW, Jazet IM, Pijl H, Guigas B (2014) Regulation of skeletal muscle energy/nutrient-sensing pathways during metabolic adaptation to fasting in healthy humans. Am J Physiol-Endocrinol Metab 307:E885–E895. https://doi.org/10.1152/ajpendo.00215.2014

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank all participants for their time and effort.

Funding

This work was supported by funding provided to B.J.G. from the Natural Sciences and Engineering Research Council of Canada (NSERC; grant no. 402635). H.I. was supported by a post-graduate scholarship (Doctoral) from NSERC.

Author information

Authors and Affiliations

Authors

Contributions

H.I., A.A., and B.J.G conceptualized and designed the study. H.I., A.A., C.A.S., and B.J.G. collected the data. H.I., A.A., J.T.B., F.A.R., N.P., A.M., J.Q., and B.J.G. contributed to data analysis and interpretation. H.I. drafted the first version of the manuscript. All authors contributed to manuscript revisions and approved the final version of the manuscript.

Corresponding author

Correspondence to Brendon J. Gurd.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 15.9 kb)

Fig S1

Representative images for GAPDH and amido black staining for total protein. (PNG 78 kb)

High Resolution (TIFF 26353 kb)

Fig S2

NFE2L2 (A), LRP130 (B) and SIRT1 (C) mRNA expression in the vastus lateralis before (PRE), during (MID; 4 hours) and after (POST; 8 hours) an acute fast performed with (FAST+EX; grey boxes) or without (FAST; white boxes) 2-hours of low-intensity arm ergometer exercise (n=10). Note: Boxes, whiskers, horizontal lines, and crosses indicate interquartile ranges, min/max values, medians, and means, respectively (PNG 127 kb)

High Resolution (TIFF 204 kb)

Fig S3

Expression of protein involved in intracellular signaling (A), mitochondrial biogenesis (B- D), and autophagy/mitophagy (E-I) in the vastus lateralis before (PRE), during (MID; 4 hours) and after (POST; 8 hours) an acute fast performed with (FAST+EX; grey boxes) or without (FAST; white boxes) 2-hours of low-intensity arm ergometer exercise (n = 10). Note: Boxes, whiskers, horizontal lines, and crosses indicate interquartile ranges, min/max values, medians, and means, respectively. Significant/near- significant main effects and interactions (two-way RM- ANOVA) are reported below graphs where appropriate. Symbols denote significant (* p < 0.05) or near- significant (# p < 0.10) difference versus PRE (Bonferroni post-hoc). (PNG 559 kb)

High Resolution (TIFF 798 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Islam, H., Amato, A., Bonafiglia, J.T. et al. Increasing whole-body energetic stress does not augment fasting-induced changes in human skeletal muscle. Pflugers Arch - Eur J Physiol 473, 241–252 (2021). https://doi.org/10.1007/s00424-020-02499-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-020-02499-7

Keywords

Navigation