Skip to main content
Log in

Preparation of stainless steel mesh-supported ZnO and graphene/ZnO nanorod arrays with high photocatalytic performance

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

A series of zinc oxide (ZnO) nanorods arrays with different morphologies are synthesized on stainless steel mesh via a facile electrodeposition method. The influences of electrodeposition parameters on the diameter, length, density and morphology of obtained ZnO nanorods are investigated systematically. The results indicate that the electrodeposition potential is the key factor for the morphology of the obtained ZnO nanorods, which further showed the effect on the photocatalytic property of the obtained samples. Meanwhile, the prepared ZnO nanorods array exhibits an excellent photocatalytic activity for methylene blue (MB) in ultraviolet light. The degradation efficiency for MB solution reaches 95.1% under the irradiation of ultraviolet light for 120 min. In addition, the photocatalytic property of the prepared ZnO nanorods can be extended to the visible light region after the modified with graphene oxide (GO). The obtained GO/ZnO composite also shows remarkable photocatalytic activity and photostability. The photodegradation efficiency for MB is 83.6%, and the catalytic performance retains 97.3% of its initial photocatalytic activity after five cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. S.A. Bakar, G. Byzynski, C. Ribeiro, J. Alloy. Compd. 666 (2016) 38–49.

    Article  Google Scholar 

  2. I. Barton, V. Matejec, J. Matousek, J. Photochem. Photobiol. A Chem. 317 (2016) 72–80.

    Article  Google Scholar 

  3. H. Wang, H. Liu, S. Wang, L. Li, X. Liu, Appl. Catal. B Environ. 224 (2018) 341–349.

    Article  Google Scholar 

  4. H. Lu, M. Zhang, M. Guo, Appl. Surf. Sci. 317 (2014) 672–681.

    Article  Google Scholar 

  5. X. Wang, H. Lu, W. Liu, M. Guo, M. Zhang, Ceram. Int. 43 (2017) 6460–6466.

    Article  Google Scholar 

  6. W.T. Zhan, H.W. Ni, R.S. Chen, Z.Y. Wang, Y.W. Li, J.H. Li, Thin Solid Films 548 (2013) 299–305.

    Article  Google Scholar 

  7. R. Lei, H. Ni, R. Chen, B. Zhang, W. Zhan, Y. Li, Chem. Phys. Lett. 673 (2017) 1–6.

    Article  Google Scholar 

  8. K. Zakrzewska, M. Radecka, Thin Solid Films 515 (2007) 8332–8338.

    Article  Google Scholar 

  9. A. Barhoum, J. Melcher, G. Van Assche, H. Rahier, M. Bechelany, M. Fleisch, D. Bahnemann, J. Mater. Sci. 52 (2017) 2746–2762.

    Article  Google Scholar 

  10. S. Garcia-Segura, E. Brillas, J. Photochem. Photobiol. C Photochem. Rev. 31 (2017) 1–35.

    Article  Google Scholar 

  11. A. Samal, D.P. Das, Catal. Today 300 (2018) 124–135.

    Article  Google Scholar 

  12. Y. Zhang, J. Zhou, Z. Li, Q. Feng, J. Mater. Sci. 53 (2018) 3149–3162.

    Article  Google Scholar 

  13. Z.J. Wu, W. Huang, K.K. Cui, Z.F. Gao, P. Wang, J. Hazard. Mater. 278 (2014) 91–99.

    Article  Google Scholar 

  14. M. Samadi, M. Zirak, A. Naseri, E. Khorashadizade, A.Z. Moshfegh, Thin Solid Films 605 (2016) 2–19.

    Article  Google Scholar 

  15. E. Benavente, F. Durán, C. Sotomayor-Torres, G. González, J. Phys. Chem. Solids 113 (2018) 119–124.

    Article  Google Scholar 

  16. E. Rokhsat, O. Akhavan, Appl. Surf. Sci. 371 (2016) 590–595.

    Article  Google Scholar 

  17. J. Ding, M. Wang, J. Deng, W. Gao, Z. Yang, C. Ran, X. Zhang, J. Alloy. Compd. 582 (2014) 29–32.

    Article  Google Scholar 

  18. T. Pauporté, D. Lincot, Appl. Phys. Lett. 75 (1999) 3817–3819.

    Article  Google Scholar 

  19. A. Goux, T. Pauporté, T. Yoshida, D. Lincot, Langmuir 22 (2006) 10545–10553.

    Article  Google Scholar 

  20. M. Pérez-González, S.A. Tomás, M. Morales-Luna, M.A. Arvizu, M.M. Tellez-Cruz, Thin Solid Films 594 (2015) 304–309.

    Article  Google Scholar 

  21. G. Byzynski, A.P. Pereira, D.P. Volanti, C. Ribeiro, E. Longo, J. Photochem. Photobiol. A Chem. 353 (2018) 358–367.

    Article  Google Scholar 

  22. H. Wang, X. Liu, S. Wang, L. Li, Appl. Catal. B Environ. 222 (2018) 209–218.

    Article  Google Scholar 

  23. Y. Xie, B. Cai, D. Yu, W. Shan, W.H. Zhang, J. Cryst. Growth 346 (2012) 64–68.

    Article  Google Scholar 

  24. S.T. Tan, A.A. Umar, M.M. Salleh, J. Phys. Chem. Solids 93 (2016) 73–78.

    Article  Google Scholar 

  25. A. Lee, G. Kim, S.J. Yoo, I.S. Cho, H. Seo, B. Ahn, H.K. Yu, Thin Solid Films 619 (2016) 68–72.

    Article  Google Scholar 

  26. M. Zhong, W. Guo, C. Li, L. Chai, J. Alloy. Compd. 725 (2017) 1018–1026.

    Article  Google Scholar 

  27. M.H. Hsu, C.J. Chang, J. Hazard. Mater. 278 (2014) 444–453.

    Article  Google Scholar 

  28. T.T. Vu, L. del Río, T. Valdés-Solís, G. Marbán, J. Hazard. Mater. 246–247 (2013) 126–134.

    Article  Google Scholar 

  29. P. Obreja, D. Cristea, A. Dinescu, C. Romaniţan, Appl. Surf. Sci. 463 (2019) 1117–1123.

    Article  Google Scholar 

  30. C.J. Chang, Z. Lee, C.F. Wang, Int. J. Hydrogen Energy 39 (2014) 20754–20763.

    Article  Google Scholar 

  31. M.H. Hsu, C.J. Chang, Int. J. Hydrogen Energy 39 (2014) 16524–16533.

    Article  Google Scholar 

  32. J.M. Wu, Q.E. Zhao, Appl. Surf. Sci. 527 (2020) 146779.

    Article  Google Scholar 

  33. M.K. Singha, A. Patra, Opt. Mater. (Amst) 107 (2020) 110000.

    Article  Google Scholar 

  34. F.H. Ko, W.J. Lo, Y.C. Chang, J.Y. Guo, C.M. Chen, J. Alloy. Compd. 678 (2016) 137–146.

    Article  Google Scholar 

  35. D.I. Son, B.W. Kwon, D.H. Park, W.S. Seo, Y. Yi, B. Angadi, C.L. Lee, W.K. Choi, Nat. Nanotechnol. 7 (2012) 465–471.

    Article  Google Scholar 

  36. J. Qiu, M. Guo, X. Wang, ACS Appl. Mater. Interfaces 3 (2011) 2358–2367.

    Article  Google Scholar 

  37. L.E. Greene, M. Law, D.H. Tan, M. Montano, J. Goldberger, G. Somorjai, P. Yang, Nano Lett. 5 (2005) 1231–1236.

    Article  Google Scholar 

  38. A.B. Djurišić, X. Chen, Y.H. Leung, A. Man Ching Ng, J. Mater. Chem. 22 (2012) 6526–6535.

  39. T. Zou, C. Wang, R. Tan, W. Song, Y. Cheng, J. Hazard. Mater. 338 (2017) 276–286.

    Article  Google Scholar 

  40. F. Zheng, H. Lu, M. Guo, M. Zhang, Q. Zhen, J. Mater. Chem. C 3 (2015) 7612–7620.

    Article  Google Scholar 

  41. E. Baylan, O. Altintas Yildirim, Mater. Sci. Semicond. Process 103 (2019) 104621.

  42. J. Wang, R. Chen, Y. Xia, G. Wang, H. Zhao, L. Xiang, S. Komarneni, Ceram. Int. 43 (2017) 1870–1879.

    Article  Google Scholar 

  43. M. Arifin, L. Roza, V. Fauzia, Results Phys. 15 (2019) 102678.

    Article  Google Scholar 

  44. D. Smazna, S. Shree, O. Polonskyi, S. Lamaka, M. Baum, M. Zheludkevich, F. Faupel, R. Adelung, Y.K. Mishra, J. Environ. Chem. Eng. 7 (2019) 103016.

    Article  Google Scholar 

  45. J.Y. Mei, P. Qi, X.N. Wei, X.C. Zheng, Q. Wang, X.X. Guan, Mater. Res. Bull. 109 (2019) 141–148.

    Article  Google Scholar 

  46. T. Liu, Y. Li, H. Zhang, M. Wang, X. Fei, S. Duo, Y. Chen, J. Pan, W. Wang, Appl. Surf. Sci. 357 (2015) 516–529.

    Article  Google Scholar 

  47. S. Duo, R. Zhong, Z. Liu, J. Wang, T. Liu, C. Huang, H. Wu, J. Phys. Chem. Solids 120 (2018) 20–33.

    Article  Google Scholar 

  48. S.P. Lonkar, V. Pillai, A. Abdala, Appl. Surf. Sci. 465 (2019) 1107–1113.

    Article  Google Scholar 

  49. S. Prabhu, S. Megala, S. Harish, M. Navaneethan, P. Maadeswaran, S. Sohila, R. Ramesh, Appl. Surf. Sci. 487 (2019) 1279–1288.

    Article  Google Scholar 

  50. A. Ramos-Corona, R. Rangel, J.J. Alvarado-Gil, P. Bartolo-Pérez, P. Quintana, G. Rodríguez-Gattorno, Chemosphere 236 (2019) 124368.

    Article  Google Scholar 

  51. B. Xue, Y. Zou, J. Colloid Interface Sci. 529 (2018) 306–313.

    Article  Google Scholar 

  52. B. Li, X. Yu, X. Yu, R. Du, L. Liu, Y. Zhang, Appl. Surf. Sci. 478 (2019) 991–997.

    Article  Google Scholar 

  53. S. Kumar, A. Dhiman, P. Sudhagar, V. Krishnan, Appl. Surf. Sci. 447 (2018) 802–815.

    Article  Google Scholar 

  54. S.H. Hsieh, J.M. Ting, Appl. Surf. Sci. 427 (2018) 465–475.

    Article  Google Scholar 

  55. S. Singh, R. Sharma, B.R. Mehta, Appl. Surf. Sci. 411 (2017) 321–330.

    Article  Google Scholar 

Download references

Acknowledgements

The work was financially supported by the National Natural Science Foundation of China (Nos. 51774217, 51604202 and 51604201), the Shanghai Sailing Program (No. 19YF1415800) and the Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, China (No. FMRUlab-20-2). The authors would also like to thank the Shiyanjia Lab (www.shiyanjia.com) for the TEM analysis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yang Li or Feng Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Lv, Yz., Chen, C. et al. Preparation of stainless steel mesh-supported ZnO and graphene/ZnO nanorod arrays with high photocatalytic performance. J. Iron Steel Res. Int. 28, 874–888 (2021). https://doi.org/10.1007/s42243-020-00548-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-020-00548-0

Keywords

Navigation