Skip to main content
Log in

Laboratory Study on Dynamic Properties of Municipal Solid Waste in Saravan Landfill, Iran

  • Research paper
  • Published:
International Journal of Civil Engineering Aims and scope Submit manuscript

Abstract

Saravan landfill, located in northern Iran, has been an environmental cause of concern through its entire time of operation. As part of a project aimed at bringing the landfill conditions closer to standards, large-scale cyclic direct shear and bender element tests were carried out on reconstituted waste samples, obtained from different locations and depths at the landfill. Samples obtained at greater depths were found to have a higher fibre content which mostly consisted of nondegradable plastics that accumulated while a large part of the rest of the waste succumbed to biodegradation. Bender element tests showed an increase in the shear wave velocity and maximum shear modulus of the waste with ageing. This increase coincided with an increase in the sample unit weight. Normalized shear modulus reduction and damping ratio curves were obtained from the cyclic direct shear tests which were consistent with data available in literature. In addition, ageing was observed to shift the modulus reduction and damping curves to the left, decreasing the former while increasing the latter and resulting in a reduction in the shear strain corresponding to the onset of plastic behaviour. Ten cycles of direct shear loading at a 3.33% strain caused shear modulus and damping ratio to decrease by about 50% and 40%, respectively, most of which occurred within the first three or four cycles. Secant friction angle obtained from post-cyclic shear strength tests were found to vary between 32° and 55°, which was consistent with previous research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Castelli F, Lentini V, Maugeri M (2013) Stability analysis of landfills in seismic area. In: Geo-congress 2013: stability and performance of slopes and embankments III, pp 1226–1239. https://doi.org/10.1061/9780784412787.124

  2. Hendron DM, Fernandez G, Prommer PJ, Giroud JP, Orozco LF (1999) Investigation of the cause of the 27 September 1997 slope failure at the Dona Juana landfill. In: Proceedings of Sardinia, 7th international waste management and landfill symposium, Margherita di Pula, Cagliari, Sardinia, Italy, vol 99, pp 545–567

  3. Augello AJ, Matasović N, Bray JD, Kavazanjian E Jr, Seed RB (1995) Evaluation of solid waste landfill performance during the Northridge earthquake. Geotech Spec Publ 54:17–50

    Google Scholar 

  4. Eid HT, Stark TD, Evans WD, Sherry PE (2000) Municipal solid waste slope failure. I: waste and foundation soil properties. J Geotech Geoenviron Eng 126(5):397–407. https://doi.org/10.1061/(asce)1090-0241(2000)126:5(397)

    Article  Google Scholar 

  5. Merry SM, Kavazanjian E Jr, Fritz WU (2005) Reconnaissance of the July 10, 2000, Payatas landfill failure. J Perform Constr Facil 19(2):100–107. https://doi.org/10.1061/(asce)0887-3828(2005)19:2(100)

    Article  Google Scholar 

  6. Kölsch F, Fricke K, Mahler C, Damanhuri E (2005) Stability of landfills, the Bandung dumpsite disaster. In: Proceedings of Sardinia, 10th international waste management and landfill symposium, Margherita di Pula, Cagliari, Sardinia, Italy

  7. Yuan P, Kavazanjian E Jr, Chen W, Seo B (2011) Compositional effects on the dynamic properties of municipal solid waste. Waste Manag 31(12):2380–2390. https://doi.org/10.1016/j.wasman.2011.07.009

    Article  Google Scholar 

  8. Zekkos DP, Bray JD, Riemer MF (2006) Shear modulus reduction and material damping relations for municipal solid-waste. In: Proceedings of the 8th US national conference on earthquake engineering, San Francisco, United States, pp 18–22

  9. Kavazanjian Jr E, Matasović N, Stokoe KH, Bray JD (1996) In situ shear wave velocity of solid waste from surface wave measurements. In: Proceedings of the 2nd international congress on environmental geotechnics, Osaka, Japan, vol 1, pp 97–104

  10. Rix GJ, Lai CG, Foti S, Zywicki D (1998) Surface wave tests in landfills and embankments. In: Dakoulas P, Yegian M, Holtz RD (eds) Geotechnical earthquake engineering and soil dynamics III. American Society of Civil Engineers ASCE, New York, pp 1008–1019

    Google Scholar 

  11. Matasović N, Kavazanjian E Jr (1998) Cyclic characterization of OII landfill solid waste. J Geotech Geoenviron Eng 124(3):197–210. https://doi.org/10.1061/(asce)1090-0241(1998)124:3(197)

    Article  Google Scholar 

  12. Pereira AGH, Sopena L, Mateos TG (2002) Compressibility of a municipal solid waste landfill. In: Proceedings of the 4th international congress on environmental geotechnics, vol 1, pp 201–206

  13. Kavazanjian Jr E (2003) Evaluation of MSW properties using field measurements. In: Proceedings of the 17th geosynthetic research institute conference, hot topics in geosynthetics IV, pp 74–113

  14. Zekkos DP (2005) Evaluation of static and dynamic properties of municipal solid waste. Doctoral Dissertation, University of California, Berkeley

  15. Hossain MS, Haque MA, Hoyos LR (2010) Dynamic properties of municipal solid waste in bioreactor landfills with degradation. Geotech Geol Eng 28(4):391–403. https://doi.org/10.1007/s10706-009-9299-3

    Article  Google Scholar 

  16. Khaleghi M (2011) In-Situ test to determine the effect of aging on shear wave velocity of municipal solid waste (Case study: Kahrizak landfill). Master of Science Thesis. Iran University of Science and Technology, Tehran, Iran [in Persian]

  17. Zekkos DP, Sahadewa A, Woods R, Stokoe K, Matasović N (2013) In situ assessment of the nonlinear shear modulus of municipal solid waste. In: Proceedings of the 18th international conference on soil mechanics and geotechnical engineering, Paris, France, pp 1663–1666

  18. Sahadewa A, Zekkos D, Fei X, Li J, Zhao X (2014) Recurring shear wave velocity measurements at the Smiths Creek bioreactor landfill. In: geo-congress 2014: geo-characterization and modeling for sustainability, pp 2072–2081. https://doi.org/10.1061/9780784413272.202

  19. Sahadewa A, Zekkos D, Woods RD, Stokoe KH II, Matasović N (2014) In-situ assessment of the dynamic properties of municipal solid waste at a landfill in Texas. Soil Dyn Earthq Eng 65:303–313. https://doi.org/10.1016/j.soildyn.2014.04.004

    Article  Google Scholar 

  20. Ramaiah BJ (2015) Static and dynamic slope stability assessment of municipal solid waste dump sites in Delhi, India. Doctoral Dissertation, Indian Institute of Technology Delhi, Delhi, India

  21. Alidoust P, Keramati M, Shariatmadari N (2018) Laboratory studies on effect of fiber content on dynamic characteristics of municipal solid waste. Waste Manag 76:126–137. https://doi.org/10.1016/j.wasman.2018.02.038

    Article  Google Scholar 

  22. Idriss IM, Fiegel G, Hudson MB, Mundy PK, Herzig R (1995) Seismic response of the operating industries landfill. In: Yegian MK, Finn WDL (eds) Earthquake design and performance of solid waste landfills. American Society of Civil Engineers ASCE, New York, pp 83–118

    Google Scholar 

  23. Augello AJ, Bray JD, Abrahamson NA, Seed RB (1998) Dynamic properties of solid waste based on back-analysis of OII landfill. J Geotech Geoenviron Eng 124(3):211–222. https://doi.org/10.1061/(asce)1090-0241(1998)124:3(211)

    Article  Google Scholar 

  24. Morochnik V, Bardet JP, Hushmand B (1998) Identification of dynamic properties of OII landfill. J Geotech Geoenviron Eng 124(3):186–196. https://doi.org/10.1061/(asce)1090-0241(1998)124:3(186)

    Article  Google Scholar 

  25. Elgamal A, Lai T, Gunturi R, Zeghal M (2004) System identification of landfill seismic response. J Earthq Eng 8(04):545–566. https://doi.org/10.1080/13632460409350500

    Article  Google Scholar 

  26. Towhata I, Kawano Y, Yonai Y, Kölsch F (2004) Laboratory tests on dynamic properties of municipal wastes. In: 11th conference in soil dynamics and earthquake engineering and 3rd international conference on earthquake geotechnical engineering, vol 1, pp 688–693

  27. Zekkos DP, Bray JD, Riemer MF (2008) Shear modulus and material damping of municipal solid waste based on large-scale cyclic triaxial testing. Can Geotech J 45(1):45–58. https://doi.org/10.1139/t07-069

    Article  Google Scholar 

  28. Towhata I, Uno M (2008) Cyclic shear tests of municipal waste in large triaxial device for identification of its dynamic properties. In: Zeng D, Manzari MT, Hiltunen DR (eds) Geotechnical earthquake engineering and soil dynamics IV. American Society of Civil Engineers ASCE, New York, pp 1–10. https://doi.org/10.1061/40975(318)39

    Chapter  Google Scholar 

  29. Naveen BP, Sitharam TG, Sivapullaiah PV (2014) Evaluating the dynamic characteristics of municipal solid waste for geotechnical purpose. Curr Adv Civ Eng 2(1):28–34

    Google Scholar 

  30. Matasović N, Williamson TA, Bachus RC (1998) Cyclic direct simple shear testing of OII landfill solid waste. In: Proceedings of the 11th European conference on soil mechanics and foundation engineering, Porec, Croatia, vol 1, pp 441–448

  31. Lee JJ (2007) Dynamic characteristics of municipal solid waste (MSW) in the linear and nonlinear strain ranges. Doctoral Dissertation, University of Texas at Austin, Austin, Texas

  32. Ramaiah BJ, Ramana GV, Bansal BK (2016) Field and large scale laboratory studies on dynamic properties of emplaced municipal solid waste from two dump sites at Delhi, India. Soil Dyn Earthq Eng 90:340–357. https://doi.org/10.1016/j.soildyn.2016.09.001

    Article  Google Scholar 

  33. Keramati M, Shariatmadari N, Karimpour-Fard M, Shahrbabak MN (2016) Dynamic behaviour of MSW materials under cyclic triaxial testing: a case of Kahrizak Landfill, Tehra, Iran. Iran J Sci Technol Trans Civ Eng 40(2):75–83. https://doi.org/10.1007/s40996-016-0006-3

    Article  Google Scholar 

  34. Keramati M, Shariatmadari N, Karimpour-Fard M, Saeedanezhad A, Alidoust P (2017) Effects of aging on dynamic properties of MSW: a case study from Kahrizak Landfill, Tehran, Iran. Sci Iran 26(3):1077–1088. https://doi.org/10.24200/sci.2017.4594

    Article  Google Scholar 

  35. Castelli F, Lentini V, Maugeri M (2017) Dynamic characterisation of municipal solid waste by SDMT. Environ Geotech 4(1):9–18. https://doi.org/10.1680/envgeo.13.00121

    Article  Google Scholar 

  36. Karimpour-Fard M (2019) Rehabilitation of Saravan dumpsite in Rasht, Iran: geotechnical characterization of municipal solid waste. Int J Environ Sci Technol 16(8):4419–4436. https://doi.org/10.1007/s13762-018-1847-z

    Article  Google Scholar 

  37. Mirhaji V, Jafarian Y, Baziar MH, Jafari MK (2019) Seismic in-soil isolation of solid waste landfill using geosynthetic liners: shaking table modeling of Tehran landfill. Int J Civ Eng 17(2):205–217. https://doi.org/10.1007/s40999-017-0232-5

    Article  Google Scholar 

  38. Zekkos DP, Athanasopoulos GA, Bray JD, Grizi A, Theodoratos A (2010) Large-scale direct shear testing of municipal solid waste. Waste Manag 30(8–9):1544–1555. https://doi.org/10.1016/j.wasman.2010.01.024

    Article  Google Scholar 

  39. Dixon N, Langer U (2006) Development of a MSW classification system for the evaluation of mechanical properties. Waste Manag 26(3):220–232. https://doi.org/10.1016/j.wasman.2005.02.018

    Article  Google Scholar 

  40. ASTM (2002) D 4767: Standard test method for consolidated undrained triaxial compression test for cohesive soils. ASTM International, West Conshohocken. https://doi.org/10.1520/D4767-02

    Book  Google Scholar 

  41. ASTM (1996) D 3999: Standard test methods for the determination of the modulus and damping properties of soils using the cyclic triaxial test apparatus. ASTM International, West Conshohocken. https://doi.org/10.1520/D3999_D3999M-11E01

    Book  Google Scholar 

  42. Chan KH, Boonyatee T, Mitachi T (2010) Effect of bender element installation in clay samples. Géotechnique 60(4):287–291. https://doi.org/10.1680/geot.7.00135

    Article  Google Scholar 

  43. Machado SL, Karimpour-Fard M, Shariatmadari N, Carvalho MF, do Nascimento JC (2010) Evaluation of the geotechnical properties of MSW in two Brazilian landfills. Waste Manag 30(12):2579–2591. https://doi.org/10.1016/j.wasman.2010.07.019

    Article  Google Scholar 

  44. Machado SL, Vilar OM, Carvalho MF (2008) Constitutive model for long term municipal solid waste mechanical behavior. Comput Geotech 35(5):775–790. https://doi.org/10.1016/j.compgeo.2007.11.008

    Article  Google Scholar 

  45. Machado SL, Carvalho MF, Nascimento JCF, Dourado KA (2006) Aging effect on MSW mechanical behaviour. In: 5th ICEG environmental geotechnics: opportunities, challenges and responsibilities for environmental geotechnics: proceedings of the ISSMGE’s 5th international congress organized by the Geoenvironmental Research Centre, Cardiff University, Thomas Telford Publishing, pp 1439–1446

  46. Falamaki A, Ghareh S, Homaee M, Shirazifard AH, Abedpour S, Kiani S, Mousavi N, Rezaei M, Motlagh MT, Dehbozorgi M, Nouri A (2020) Laboratory shear strength measurements of municipal solid waste at room and simulated in situ landfill temperature, Barmshoor landfill. Iran Int J Civ Eng 18(2):185–197. https://doi.org/10.1007/s40999-019-00446-x

    Article  Google Scholar 

  47. Feng SJ, Chen YM, Kong XJ, Zou DG (2005) Experimental research on dynamic properties of municipal solid waste. Chin J Geotech Eng 27(7):750

    Google Scholar 

  48. Singh S, Murphy BJ (1990) Evaluation of the stability of sanitary landfills. In: Landva A, Knowles G (eds) Geotechnics of waste fills, theory and practice, vol 1070. ASTM International, West Conshohocken, pp 240–258. https://doi.org/10.1520/stp25310s

    Chapter  Google Scholar 

  49. Falamaki A, Shahin S (2019) Determination of shear strength parameters of municipal solid waste from its physical properties. Iran J Sci Technol Trans Civ Eng 43(1):193–201. https://doi.org/10.1007/s40996-018-0158-4

    Article  Google Scholar 

  50. Landva AO, Clark JI (1990) Geotechnics of waste fill. In: Landva A, Knowles G (eds) Geotechnics of waste fills, theory and practice, vol 1070. ASTM International Press, West Conshohocken, pp 86–103. https://doi.org/10.1520/stp25301s

    Chapter  Google Scholar 

  51. Richardson G, Reynolds D (1991) Geosynthetic considerations in a landfill on compressible clays. Proc Geosynth 91:507–516

    Google Scholar 

  52. Houston WN, Houston SL, Liu JW, Elsayed A, Sanders CO (1995) In situ testing methods for dynamic properties of MSW landfills. In: Yegian MK, Finn WDL (eds) Earthquake design and performance of solid waste landfills. American Society of Civil Engineers ASCE, New York, pp 73–82

    Google Scholar 

  53. Edincliler A, Benson CH, Edil TB (1996) Shear strength of municipal solid waste: interim report—year 1. Environ Geotech Rep 96:2

    Google Scholar 

  54. Kavazanjian Jr E, Matasović N, Bachus RC (1999) Large-diameter static and cyclic laboratory testing of municipal solid waste. In: Proceedings of Sardinia, 7th international waste management and landfill symposium, Margherita di Pula, Cagliari, Sardinia, Italy, vol 99, pp 437–444

  55. Mazzucato A, Simonini P, Colombo S (1999) Analysis of block slide in a MSW landfill. In: Proceedings of Sardinia, 7th international waste management and landfill symposium, Margherita di Pula, Cagliari, Sardinia, Italy, vol 99, pp 537–544

  56. Caicedo B, Yamin L, Giraldo E, Coronado O, Soler N (2002) Geomechanical properties of municipal solid waste in Dona Juana sanitary landfill. In: Proceedings of the 4th international congress on environmental geotechnics, Brazil, vol 1, pp 177–182

  57. Mahler CF, De Lamare Netto A (2003) Shear resistance of mechanical biological pre-treated domestic urban waste. In: Proceedings of Sardinia, 9th International waste management and landfill symposium, Margherita di Pula, Cagliari, Sardinia, Italy, 6–10

  58. Zekkos DP, Bray JD, Riemer MF (2012) Drained response of municipal solid waste in large-scale triaxial shear testing. Waste Manag 32(10):1873–1885. https://doi.org/10.1016/j.wasman.2012.05.004

    Article  Google Scholar 

  59. Karimpour-Fard M, Shariatmadari N, Keramati M, Jafari Kalarijani H (2014) An experimental investigation on the mechanical behavior of MSW. Int J Civ Eng 12(4):292–303

    Google Scholar 

  60. Shariatmadari N, Asadi M, Karimpour-Fard M (2017) Investigation of fiber effect on the mechanical behavior of municipal solid waste by different shearing test apparatuses. Int J Environ Sci Technol 14(10):2239–2248. https://doi.org/10.1007/s13762-017-1297-z

    Article  Google Scholar 

  61. Chen YM, Zhan TL, Wei HY, Ke H (2009) Aging and compressibility of municipal solid wastes. Waste Manag 29(1):86–95. https://doi.org/10.1016/j.wasman.2008.02.024

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehran Karimpour-Fard.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karimpour-Fard, M., Alaie, R., Rezaie Soufi, G. et al. Laboratory Study on Dynamic Properties of Municipal Solid Waste in Saravan Landfill, Iran. Int J Civ Eng 19, 861–879 (2021). https://doi.org/10.1007/s40999-020-00588-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40999-020-00588-3

Keywords

Navigation