Skip to main content
Log in

Kinetic Approach by Photocurrent Measurements to the Photoelectrocatalytic Oxidation of an Anionic Surfactant Using an S,N-TiO2/Ti Electrode: Distinguishing Between Direct and Indirect Mechanisms

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The photoelectrocatalytic oxidation of an anionic surfactant (internal olefin sulfonate C20-C24, IOS) in synthetic oilfield wastewater was investigated by photocurrent measurements using a sulfur and nitrogen co-doped titanium dioxide electrode (S,N-TiO2/Ti). For the electrode preparation, S,N-TiO2 films were supported on Ti expanded meshes by sol–gel dip-coating, followed by thermal treatment at 400 °C. Photocurrent measurements were performed by linear sweep voltammetry (LSV) under UV–Vis irradiation using different IOS concentrations (20–200 ppm). The photocurrent values obtained at 0.5 V vs Ag/AgCl (iph) for each IOS concentration (CIOS) were used to plot the 1/iph vs 1/CIOS graph, in which two trends were identified. For high IOS concentrations (70–200 ppm), the values fitted well to the unimolecular Langmuir–Hinshelwood (LH1) kinetic model (R2 = 0.973), which can be associated with the direct oxidation mechanism. For low IOS concentrations (20–70 ppm), the values fitted better to a linear combination of both unimolecular and bimolecular Langmuir–Hinshelwood (LH1 and LH2) kinetic models (R2 = 0.854), which can be associated with direct and indirect oxidation mechanisms, respectively. These results suggest that at high IOS concentrations the IOS adsorption plays the main role on the photoelectrocatalytic oxidation, while at low IOS concentrations both IOS adsorption and H2O adsorption (surface hydrophilicity) play important roles on the photoelectrocatalytic oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1 
Fig. 2
Fig. 3 
Fig. 4
Fig. 5 
Fig. 6 
Fig. 7 

Similar content being viewed by others

References

  1. Sheng JJ (2011) Modern Chemical Enhanced Oil Recovery. Elsevier Inc. https://doi.org/10.1016/C2009-0-20241-8

  2. Olajire AA (2014) Review of ASP EOR (alkaline surfactant polymer enhanced oil recovery) technology in the petroleum industry: Prospects and challenges. Energy 77:963–982. https://doi.org/10.1016/j.energy.2014.09.005

    Article  CAS  Google Scholar 

  3. Dwyer P, Delamaide E (2015) Produced Water Treatment-Preparing for EOR Projects. In SPE Produced Water Handling & Management Symposium. Society of Petroleum Engineers. https://doi.org/10.2118/174537-MS.

  4. Kaiser A, White A, Lukman A, Gernand M, ShamsiJazeyi H, Wylde J, Alvarez L (2015) The Influence of Chemical EOR on Produced Water Separation and Quality. Society of Petroleum Engineers. https://doi.org/10.2118/174659-MS

  5. Najamudin KE, Halim H, Salleh IK, Chai I, Hsia C, Yusof MY, Faizal M Petronas S (2014) Chemical EOR Produced Water Management at Malay Basin Field. In Offshore Technology Conference (Ed.), Offshore Technology Conference, Kuala Lumpur, Malaysia, pp 1–9. https://doi.org/10.4043/24804-MS

  6. Fernández E, Benito JM, Pazos C, Coca J (2005) Ceramic membrane ultrafiltration of anionic and nonionic surfactant solutions. J Membr Sci 246(1):1–6. https://doi.org/10.1016/j.memsci.2004.04.007

    Article  CAS  Google Scholar 

  7. Delanghe B, Mekras CI, Graham NJD (1991) Aqueous ozonation of surfactants: a review. Ozone Sci Eng 13(6):639–673. https://doi.org/10.1080/01919512.1991.10555707

    Article  CAS  Google Scholar 

  8. Karci A, Arslan-Alaton I, Bekbolet M (2013) Advanced oxidation of a commercially important nonionic surfactant: Investigation of degradation products and toxicity. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2013.03.052

    Article  PubMed  Google Scholar 

  9. Méndez-Díaz J, Sánchez-Polo M, Rivera-Utrilla J, Canonica S, Von Gunten U (2010) Advanced oxidation of the surfactant SDBS by means of hydroxyl and sulphate radicals. Chem Eng J 163:300–306. https://doi.org/10.1016/j.cej.2010.08.002

    Article  CAS  Google Scholar 

  10. Ríos F, Olak-kucharczyk M, Gmurek M (2017) Removal efficiency of anionic surfactants from water during UVC photolysis and advanced oxidation process in H2O2 /UVC system. Archives of Environmental Protection 43(1):20–26. https://doi.org/10.1515/aep-2017-0003

    Article  Google Scholar 

  11. Zhang F, Zhao J, Shen T, Hidaka H, Pelizzetti E, Serpone N (1998) TiO2-assisted photodegradation of dye pollutants II. Adsorption and degradation kinetics of eosin in TiO2. Appl Catal B 15(1–2):147–156. https://doi.org/10.1016/S0926-3373(97)00043-X

    Article  Google Scholar 

  12. Lizama C, Bravo C, Caneo C, Ollino M (2005) Photocatalytic degradation of surfactants with immobilized TiO2: comparing two reaction systems. Environ Technol 26(8):909–914. https://doi.org/10.1080/09593332608618496

    Article  CAS  PubMed  Google Scholar 

  13. Yong Y, Sharma VK, Ray AK (2010) Photocatalytic degradation of nonionic surfactant, Brij 35 in aqueous TiO2 suspensions. Chemosphere 79:205–209. https://doi.org/10.1016/j.chemosphere.2010.01.042

    Article  CAS  Google Scholar 

  14. Giahi M, Habibi S, Totonchi S, Khavei M (2012) Photocatalytic degradation of anionic surfactant using zinc oxide photocatalytic degradation of anionic surfactant. Russ J Phys Chem A 86(4):689–693. https://doi.org/10.1134/S0036024412040103

    Article  CAS  Google Scholar 

  15. Perkowski J, Bzdon S, Bulska A, Jóźwiak WK (2006) Decomposition of detergents present in car-wash sewage by titania photo-assisted oxidation. Polish J Environ Stud 15:457–465

    CAS  Google Scholar 

  16. Lissens G, Pieters J, Verhaege M, Pinoy L, Verstraete W (2003) Electrochemical degradation of surfactants by intermediates of water discharge at carbon-based electrodes. Electrochimica Acta 48:1655–1663. https://doi.org/10.1016/S0013-4686(03)00084-7

    Article  CAS  Google Scholar 

  17. Gu L, Wang B, Ma H, Kong W (2006) Catalytic oxidation of anionic surfactants by electrochemical oxidation with CuO–Co2O3– PO 3−4 modified kaolin. J Hazard Mater 137:842–848. https://doi.org/10.1016/j.jhazmat.2006.03.012

    Article  CAS  PubMed  Google Scholar 

  18. Louhichi B, Ahmadi MF, Bensalah N, Gadri A, Rodrigo MA (2008) Electrochemical degradation of an anionic surfactant on boron-doped diamond anodes. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2008.01.093

    Article  PubMed  Google Scholar 

  19. Carreño-Lizcano MI, Gualdrón-Reyes AF, Rodríguez-González V, Pedraza-Avella JA, Niño-Gómez ME (2020) Photoelectrocatalytic phenol oxidation employing nitrogen doped TiO2-rGO films as photoanodes. Catal Today 341:96–103. https://doi.org/10.1016/j.cattod.2019.02.006

    Article  CAS  Google Scholar 

  20. Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95(1):69–96. https://doi.org/10.1021/cr00033a004

    Article  CAS  Google Scholar 

  21. Qu X, Alvarez PJ, Li Q (2013) Applications of nanotechnology in water and wastewater treatment. Water res 47(12):3931–3946. https://doi.org/10.1016/j.watres.2012.09.058

    Article  CAS  PubMed  Google Scholar 

  22. Bilmes SA, Candal RJ, Arancibia A, Rodrigues J (2001) Eliminación de contaminantes por fotocatálisis heterogénea. CYTED Madrid, España

    Google Scholar 

  23. Lianos P (2011) Production of electricity and hydrogen by photocatalytic degradation of organic wastes in a photoelectrochemical cell: the concept of the photofuelcell: a review of a re-emerging research field. J Hazard Mater 185(2–3):575–590. https://doi.org/10.1016/j.jhazmat.2010.10.083

    Article  CAS  PubMed  Google Scholar 

  24. Finklea HO (1988) Semiconductor Electrodes. Elsevier, New York

    Google Scholar 

  25. Zanoni MVB, Sene JJ, Anderson MA (2003) Photoelectrocatalytic degradation of Remazol Brilliant Orange 3R on titanium dioxide thin-film electrodes. J Photochem Photobiol A 157:55–63. https://doi.org/10.1016/S1010-6030(02)00320-9

    Article  CAS  Google Scholar 

  26. Paschoal FM, Anderson MA, Zanoni MVB (2008) Photoeletrocatalytic oxidation of anionic surfactant used in leather industry on nanoporous Ti/TiO2 eletrodes. J Braz Chem Soc 19(4):803–810

    Article  CAS  Google Scholar 

  27. Villarreal TL, Gmez R, Gonzlez M, Salvador P, Go R, Gonza M (2004) A Kinetic Model for Distinguishing between Direct and Indirect Interfacial Hole Transfer in the Heterogeneous Photooxidation of Dissolved Organics on TiO Nanoparticle Suspensions. J Phys Chem B 108(52):20278–20290. https://doi.org/10.1021/jp046539r

    Article  CAS  Google Scholar 

  28. Schwankl M, Kellner R, Singer RF, Korner C (2013) The influence of sandblasting on the morphology of electroless deposited zinclayers on aluminum sheets. Appl Surf Sci 283:202–208. https://doi.org/10.1016/j.apsusc.2013.06.082

    Article  CAS  Google Scholar 

  29. Jaramillo-Gutiérrez M.I, Acevedo-Peña P, Reguera E, Niño-Gómez M.E, Pedraza-Avella J.A, (2020) Photoelectrochemical performance of S,N-codoped TiO2 films supported on Ti and their enhanced photoelectrocatalytic activity in the generation of hydroxyl radicals. J. Electrochem. Soc. [Manuscript accepted for publication]

  30. Andreozzi R, Caprio V, Insola A, Marotta R (1999) Advanced oxidation processes (AOP) for water purification and recovery. Catal today 53(1):51–59. https://doi.org/10.1016/S0920-5861(99)00102-9

    Article  CAS  Google Scholar 

  31. Blanco J, Malato S (1996) Tecnología de fotocatálisis solar. Utilización de la radicación solar para el tratamiento de contaminantes industriales, CINEMAT Escobar impresiones, España

    Google Scholar 

  32. Ishibashi KI, Fujishima A, Watanabe T, Hashimoto K (2000) Quantum yields of active oxidative species formed on TiO2 photocatalyst. J Photochem Photobiol A 134(1–2):139–142. https://doi.org/10.1016/S1010-6030(00)00264-1

    Article  CAS  Google Scholar 

  33. Xiao Q, Si Z, Zhang J, Xiao C, Tan X (2008) Photoinduced hydroxyl radical and photocatalytic activity of samarium-doped TiO2 nanocrystalline. J Hazard Mater 150:62–67. https://doi.org/10.1016/j.jhazmat.2007.04.045

    Article  CAS  PubMed  Google Scholar 

  34. Walas SM (1995) Reaction kinetics for chemical engineers. New York, USA.

  35. Laidler KJ, Bunting PS (1973) The chemical kinetics of enzyme action. England, Oxford

    Google Scholar 

  36. Rajeshwar K, Ibanez JG (1997) Environmental electrochemistry: Fundamentals and applications in pollution sensors and abatement. England, London

    Google Scholar 

  37. Kalamaras E, Lianos P (2015) Current doubling effect revisited: current multiplication in a PhotoFuelCell. J Electroanal Chem 751:37–42. https://doi.org/10.1016/j.jelechem.2015.05.029

    Article  CAS  Google Scholar 

  38. Waldner G, Gómez R, Neumann-Spallart M (2007) Using photoelectrochemical measurements for distinguishing between direct and indirect hole transfer processes on anatase: Case of oxalic acid. Electrochim Acta 52(7):2634–2639. https://doi.org/10.1016/j.electacta.2006.09.019

    Article  CAS  Google Scholar 

  39. Salvador P (1985) Kinetic approach to the photocurrent transients in water photoelectrolysis at n-titanium dioxide electrodes. 1. Analysis of the ratio of the instantaneous to steady-state photocurrent. J Phys Chem 89(18):3863–3869

    Article  CAS  Google Scholar 

  40. Addullah A, O’Shea K (2019) TiO2 photocatalytic degradation of the flame retardant tris (2-chloroethyl) phosphate (TCEP) in aqueous solution: A detailed kinetic and mechanistic study. J Phys Chem 377(19):130–137. https://doi.org/10.1016/j.jphotochem.2019.03.026

    Article  CAS  Google Scholar 

  41. Girods P, Dufour A, Fierro V, Rogaume Y, Rogaume C, Zoulalian A, Celzard A (2009) Activated carbons prepared from wood particleboard wastes: Characterisation and phenol adsorption capacities. J Hazard Mater 166(1):491–501

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been carried out with the financial support of Universidad Industrial de Santander—UIS and Instituto Colombiano del Petróleo—ICP, ECOPETROL through the academic agreement No. 5222395 (Convenio Marco de Cooperación Tecnológica y Científica UIS–ECOPETROL S.A.). M.I. Jaramillo-Gutierrez also thank COLCIENCIAS for the studentship under the program “Doctorados Nacionales No.647-2014”.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. I. Jaramillo-Gutiérrez or J. A. Pedraza-Avella.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaramillo-Gutiérrez, M.I., Velasco-Rueda, J.S. & Pedraza-Avella, J.A. Kinetic Approach by Photocurrent Measurements to the Photoelectrocatalytic Oxidation of an Anionic Surfactant Using an S,N-TiO2/Ti Electrode: Distinguishing Between Direct and Indirect Mechanisms. Top Catal 64, 26–35 (2021). https://doi.org/10.1007/s11244-020-01404-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-020-01404-x

Keywords

Navigation