Skip to main content
Log in

Rotating detonation waves in annular gap with variable stagnation pressure

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

We consider a three-dimensional unsteady flow with one, two, or four rotating detonation waves arising in an annular gap of an axially symmetric device between two parallel planes perpendicular to its symmetry axis. The corresponding problem is formulated and studied. It is assumed that there is a reservoir with quiescent homogeneous propane–air combustible mixture with given stagnation parameters; the mixture flows from the reservoir into the annular gap through its external cylindrical surface toward the symmetry axis, and the parameters of the mixture are determined by the pressure in the reservoir and the static pressure in the gap. The detonation products flow out from the gap into a space bounded on one side by an impermeable wall that is an extension of a side of the gap. Through a hole on the other side of the gap and through a conical output section with a half-opening angle of \(45^{\circ }\), the gas flows out from the engine into the external space. We formulate a model of detonation initiation by energy supply in which the direction of rotation of the detonation wave is defined by the position of the energy-release zone of the initiator with respect to the solid wall situated in a plane passing through the symmetry axis. After a while, this solid wall disappears (burns out). We obtain and analyze unsteady shock-wave structures that arise during the formation of a steady rotating detonation. We measure and compare thrust characteristics for different numbers of detonation waves. It was shown that the thrust weakly depends on the number of waves while the specific impulse increases with increasing number of waves. The study of rotating detonation at various values of the stagnation pressure was conducted. The calculation results show that at a stagnation pressure less than the critical value, the realization of rotating detonation is impossible. It is established that, depending on the stagnation pressure, qualitatively different shock-wave structures can be observed. The analysis is carried out within single-stage combustion kinetics by the numerical method based on the Godunov scheme with the use of an original software system developed for multi-parameter calculations and visualization of flows. The calculations were carried out on the Lomonosov supercomputer at Moscow State University.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Voitsekhovskii, B.V.: Steady detonation. Dokl. Akad. Nauk SSSR 129(6), 1254–1256 (1959)

    Google Scholar 

  2. Bykovskii, F.A., Klopotov, I.D., Mitrofanov, V.V.: Spin detonation of gases in a cylindrical chamber. Dokl. Akad. Nauk SSSR 224(6), 1038–1041 (1975)

    Google Scholar 

  3. Bykovskii, F.A., Mitrofanov, V.V., Vedernikov, E.F.: Continuous detonation combustion of fuel–air mixtures. Combust. Explos. Shock Wave 33(3), 344–353 (1997). https://doi.org/10.1007/BF02671875

    Article  Google Scholar 

  4. Bykovskii, F.A., Zhdan, S.A., Vedernikov, E.F.: Continuous spin detonations. J. Propuls. Power 22(6), 1204–1216 (2006). https://doi.org/10.2514/1.17656

    Article  Google Scholar 

  5. Bykovskii, F.A., Zhdan, S.A., Vedernikov, E.F.: Continuous spin detonation of synthesis gas–air mixtures. Combust. Explos. Shock Wave 49(4), 435–441 (2013). https://doi.org/10.1134/S0010508213040060

    Article  Google Scholar 

  6. Frolov, S.M., Aksenov, V.S., Dubrovskii, A.V., Zangiev, A.E., Ivanov, V.S., Medvedev, S.N., Shamshin, I.O.: Chemiionization and acoustic diagnostics of the process in continuous- and pulse-detonation combustors. Dokl. Phys. Chem. 465(1), 273–278 (2015). https://doi.org/10.1134/S0012501615110019

    Article  Google Scholar 

  7. Frolov, S.M., Aksenov, V.S., Ivanov, V.S., Shamshin, I.O.: Large-scale hydrogen–air continuous detonation combustor. Int. J. Hydrog. Energy 40(3), 1616–1623 (2015). https://doi.org/10.1016/j.ijhydene.2014.11.112

    Article  Google Scholar 

  8. Frolov, S.M., Aksenov, V.S., Ivanov, V.S., Medvedev, S.N.: Rocket engine with continuous detonation combustion of the natural gas–oxygen propellant system. Dokl. Phys. Chem. 478(2), 31–34 (2018). https://doi.org/10.1134/S001250161802001X

    Article  Google Scholar 

  9. Nicholls, J.A., Cullen, R.E.: The feasibility of a rotating detonation wave rocket motor. Report No. RPL-TDR-64-113, the University of Michigan (1964)

  10. Kindracki, J., Kobiera, A., Wolanski, P.: Experimental and numerical research on rotating detonation in small rocket engine model. Combust. Eng. 48, 392–400 (2009)

  11. Hishida, M., Fujiwara, T., Wolanski, P.: Fundamentals of rotating detonations. Shock Waves 19(1), 1–10 (2009). https://doi.org/10.1007/s00193-008-0178-2

    Article  MATH  Google Scholar 

  12. Yamada, T., Hayashi, A.K., Yamada, E., Tsuboi, N., Tangirala, V.E., Fujiwara, T.: Numerical analysis of threshold of limit detonation in rotating detonation engine. 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace, AIAA Paper 2010-153 (2010). https://doi.org/10.2514/6.2010-153

  13. Kindracki, J., Kobiera, A., Wolanski, P., Gut, Z., Folusiak, M., Swiderski, K.: Experimental and numerical study of the rotating detonation engine in hydrogen–air mixtures. Prog. Propuls. Phys. 2, 555–582 (2011). https://doi.org/10.1051/eucass/201102555

    Article  Google Scholar 

  14. Wang, Y.H., Wang, J.P., Shi, T.Y., Liu, Y.S., Li, Y.S., Li, Y.: Discovery of breathing phenomena in continuously rotating detonation. Procedia Eng. 67, 188–196 (2013). https://doi.org/10.1016/j.proeng.2013.12.018

    Article  Google Scholar 

  15. Wang, C., Liu, W., Liu, S., Jiang, L., Lin, Z.: Experimental verification of air-breathing continuous rotating detonation fueled by hydrogen. Int. J. Hydrog. Energy 40(30), 9530–9538 (2015). https://doi.org/10.1016/j.ijhydene.2015.05.060

    Article  Google Scholar 

  16. Wolanski, P.: Development of the continuous rotating detonation engines. In: Roy, G.D., Frolov, S.M. (eds.) Deflagrative and Detonative Combustion, pp. 395–406. Torus Press, Moscow (2010)

  17. Bykovskii, F.A., Zhdan, S.A.: Current status of research of continuous detonation in fuel–air mixtures (review). Combust. Explos. Shock Wave 51(1), 344–353 (2015). https://doi.org/10.1134/S0010508215010025

    Article  Google Scholar 

  18. Anand, V., Gutmark, E.: Rotating detonation combustors and their similarities to rocket instabilities. Prog. Energy Combust. Sci. 73, 182–234 (2019). https://doi.org/10.1016/j.pecs.2019.04.001

    Article  Google Scholar 

  19. Levin, V.A., Afonina, N.E., Gromov, V.G., Manuylovich, I.S., Khmelevsky, A.N., Markov, V.V.: Spectra signals of gas pressure pulsations in annular and linear dual slotted nozzles. Combust. Sci. Technol. 191(2), 339–352 (2019). https://doi.org/10.1080/00102202.2018.1467405

  20. Levin, V.A., Manuylovich, I.S., Markov, V.V.: Numerical simulation of rotating detonation under variable conditions. 26th International Colloquium on the Dynamics of Explosions and Reactive Systems, Boston, MA, Paper 1104 (2017). http://www.icders.org/ICDERS2017/abstracts/ICDERS2017-1104.pdf

  21. Levin, V.A., Manuilovich, I.S., Markov, V.V.: Distinctive features of galloping detonation in a supersonic combustible-mixture flow under an inert gas layer. Fluid Dyn. 45(5), 827–834 (2010). https://doi.org/10.1134/S0015462810050157

    Article  MathSciNet  MATH  Google Scholar 

  22. Levin, V.A., Manuilovich, I.S., Markov, V.V.: Formation of detonation in rotating channels. Dokl. Phys. 55(6), 308–311 (2010). https://doi.org/10.1134/S1028335810060145

    Article  MATH  Google Scholar 

  23. Levin, V.A., Manuilovich, I.S., Markov, V.V.: Detonation initiation by rotation of an elliptic cylinder inside a circular cylinder and deformation of the channel walls. J. Appl. Mech. Technical. Phys. 51(4), 463–470 (2010). https://doi.org/10.1007/s10808-010-0062-6

    Article  MATH  Google Scholar 

  24. Levin, V.A., Manuylovich, I.S., Markov, V.V.: Mathematical modeling of shock-wave processes under gas solid boundary interaction. Proc. Steklov Inst. Math. 281(1), 37–48 (2013). https://doi.org/10.1134/S0081543813040056

    Article  MathSciNet  MATH  Google Scholar 

  25. Levin, V.A., Manuylovich, I.S., Markov, V.V.: Cellular structure of divergent cylindrical detonation waves. Dokl. Phys. 56(7), 391–393 (2011). https://doi.org/10.1134/S1028335811070020

    Article  Google Scholar 

  26. Levin, V.A., Manuylovich, I.S., Markov, V.V.: 3D cellular detonation in cylindrical channels. Dokl. Phys. 60(1), 11–14 (2015). https://doi.org/10.1134/S1028335815010024

    Article  Google Scholar 

  27. Levin, V.A., Manuylovich, I.S., Markov, V.V.: Numerical simulation of spinning detonation in circular section channels. Comput. Math. Math. Phys. 56(6), 1102–1117 (2016). https://doi.org/10.1134/S0965542516060178

    Article  MathSciNet  MATH  Google Scholar 

  28. Gurvich, L.V., Veyts, I.V. (eds.): Thermodynamic Properties of Individual Substances, vol. 1, part 2. Nauka, Moscow (1978) Hemisphere, New York (1989)

  29. Westbrook, C.K., Dryer, F.L.: Chemical kinetic modeling of hydrocarbon combustion. Prog. Energy Combust. Sci. 10(1), 1–57 (1984)

    Article  Google Scholar 

  30. Godunov, S.K., Zabrodin, A.V., Ivanov, M.I., Kraiko, A.N., Prokopov, G.P.: Numerical solution of multidimensional problems of gas dynamics. Nauka, Moscow (1976) (in Russian)

  31. Voevodin, V.V., Zhumatiy, S.A., Sobolev, S.I., Antonov, A.S., Bryzgalov, P.A., Nikitenko, D.A., Stefanov, K.S., Voevodin, Vad. V.: Practice of “Lomonosov” supercomputer. Open Syst. SUBD J., No. 7 (2012). http://www.osp.ru/os/2012/07/13017641/(in Russian)

Download references

Acknowledgements

This work was performed according to the research plan of the Institute of Mechanics, Moscow State University and Steklov Mathematical Institute of Russian Academy of Sciences. The study was supported by the Ministry of Science and Higher Education of the Russian Federation (Agreement No. 075-15-2020-806).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Manuylovich.

Additional information

Communicated by E. Gutmark.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Levin, V.A., Manuylovich, I.S. & Markov, V.V. Rotating detonation waves in annular gap with variable stagnation pressure. Shock Waves 31, 651–663 (2021). https://doi.org/10.1007/s00193-020-00988-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-020-00988-3

Keywords

Navigation