Skip to main content
Log in

The Ocean Heat Content Changes in the South China Sea due to Tropical Cyclones with Different Tracks

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

The influences of the tropical cyclones (TCs) on the ocean heat content (OHC) of the South China Sea (SCS) was investigated by observations and numerical simulations. Ensemble analyses based on observations showed notable differences in OHC changes caused by TCs with different tracks: (1) TCs which generated over the western North Pacific (WNP) and did not enter the SCS (TC-P) decreased the OHC mainly in the central SCS while increasing the OHC in southern SCS and coastal areas along South China; (2) TCs which generated over the WNP and entered the SCS (TC-PS) decreased the OHC in most of the SCS beyond the coastal areas with a higher amplitude than that caused by TC-P; and (3) TCs which generated over the SCS (TC-S) induced the strongest OHC decrease and a distinct OHC increase in the southeastern SCS and Sulu Sea (SS). The distinct response of the SCS OHC was mainly attributed to the different surface heat fluxes and oceanic transports caused by TCs. Strong surface heat flux proximal to TC tracks led to ocean heat release to the atmosphere and decreased the OHC in these areas, while the oceanic current caused by the TC cyclonic wind field transported the OHC to areas distant from the TC center. Eastward transport of the OHC south of 15° N increased the OHC in the southeastern SCS and SS. These results expressed the detailed response of the OHC to TCs with different tracks over the WNP and SCS, and clarified the influences of TCs on the ocean environments of the SCS and for predicting the changes in the SCS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Andreas, E. L., & Emanuel, K. A. (2001). Effects of sea spray on tropical cyclone intensity. Journal of the atmospheric sciences, 58(24), 3741–3751.

    Article  Google Scholar 

  • Bentamy, A., & Croize-Fillon, D. (2015). Daily ASCAT surface wind fields. IFREMER Technology Report, Laboratoire d'Oceanographie Spatiale, France.

  • Carton, J. A., & Giese, B. S. (2008). A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA). Monthly Weather Review, 136(8), 2999–3017.

    Article  Google Scholar 

  • Close, S. E., Naveira Garabato, A. C., McDonagh, E. L., King, B. A., Biuw, M., & Boehme, L. (2013). Control of mode and intermediate water mass properties in Drake Passage by the Amundsen Sea Low. Journal of Climate, 26(14), 5102–5123.

    Article  Google Scholar 

  • Donahue, D., 2015. Us doc/NOAA national environmental satellite data and information service. satellite ocean heat content suite. NOAA national centers for environmental information. dataset. URL: https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.nodc:NESDIS-OHC.

  • Dudhia, J. (1989). Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. Journal of the atmospheric sciences, 46(20), 3077–3107.

    Article  Google Scholar 

  • Dunstone, N. J., Smith, D. M., & Eade, R. (2011). Multi‐year predictability of the tropical Atlantic atmosphere driven by the high latitude North Atlantic Ocean. Geophysical Research Letters, 38(14).

  • Emanuel, K. A. (1986). An air-sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. Journal of the Atmospheric Sciences, 43(6), 585–605.

  • Emanuel, K. A. (1999). Thermodynamic control of hurricane intensity. Nature, 401(6754), 665.

    Article  Google Scholar 

  • Emanuel, K. A. (2001). Contribution of tropical cyclones to meridional heat transport by the oceans. Journal of Geophysical Research: Atmospheres, 106(D14), 14771–14781.

    Article  Google Scholar 

  • Feng, J., & Hu, D. (2014). How much does heat content of the western tropical Pacific Ocean modulate the South China Sea summer monsoon onset in the last four decades? Journal of Geophysical Research: Oceans, 119(7), 4029–4044.

    Google Scholar 

  • Gao, L., Rintoul, S. R., & Yu, W. (2018). Recent wind-driven change in Subantarctic Mode Water and its impact on ocean heat storage. Nature Climate Change, 8(1), 58.

    Article  Google Scholar 

  • Garabato, A. C. N., Jullion, L., Stevens, D. P., Heywood, K. J., & King, B. A. (2009). Variability of Subantarctic Mode Water and Antarctic Intermediate Water in the Drake Passage during the late-twentieth and early-twenty-first centuries. Journal of Climate, 22(13), 3661–3688.

    Article  Google Scholar 

  • Giese, B. S., & Ray, S. (2011). El Niño variability in simple ocean data assimilation (SODA), 1871–2008. Journal of Geophysical Research: Oceans, 116(C2).

  • He, H., Wu, Q., Chen, D., Sun, J., Liang, C., Jin, W., & Xu, Y. (2018). Effects of surface waves and sea spray on air–sea fluxes during the passage of Typhoon Hagupit. Acta Oceanologica Sinica, 37(5), 1–7.

    Article  Google Scholar 

  • Hong, S. Y., & Lim, J. O. J. (2006). The WRF single-moment 6-class microphysics scheme (WSM6). Asia-Pacific Journal of Atmospheric Sciences, 42(2), 129–151.

    Google Scholar 

  • Hong, X., Chang, S. W., Raman, S., Shay, L. K., & Hodur, R. (2000). The interaction between Hurricane Opal (1995) and a warm core ring in the Gulf of Mexico. Monthly Weather Review, 128(5), 1347–1365.

    Article  Google Scholar 

  • Hui, Z., & Xu, Y. (2016). The impact of wave-induced Coriolis Stokes forcing on satellite-derived ocean surface currents. Journal of Geophysical Research: Oceans, 121(1), 410–426.

    Google Scholar 

  • Jacob, S. D., Shay, L. K., Mariano, A. J., & Black, P. G. (2000). The 3D oceanic mixed layer response to Hurricane Gilbert. Journal of Physical Oceanography, 30(6), 1407–1429.

    Article  Google Scholar 

  • Jansen, M., & Ferrari, R. (2009). Impact of the latitudinal distribution of tropical cyclones on ocean heat transport. Geophysical Research Letters, 36(6).

  • Kain, J. S. (2004). The Kain-Fritsch convective parameterization: an update. Journal of applied meteorology, 43(1), 170–181.

    Article  Google Scholar 

  • Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., & Zhu, Y. (1996). The NCEP/NCAR 40-year reanalysis project. Bulletin of the American meteorological Society, 77(3), 437–472.

    Article  Google Scholar 

  • Korty, R. L., Emanuel, K. A., & Scott, J. R. (2008). Tropical cyclone–induced upper-ocean mixing and climate: Application to equable climates. Journal of Climate, 21(4), 638–654.

    Article  Google Scholar 

  • Lagerloef, G. S., Mitchum, G. T., Lukas, R. B., & Niiler, P. P. (1999). Tropical Pacific near-surface currents estimated from altimeter, wind, and drifter data. Journal of Geophysical Research: Oceans, 104(C10), 23313–23326.

    Article  Google Scholar 

  • Lin, I. I., Liu, W. T., Wu, C. C., Chiang, J. C., & Sui, C. H. (2003). Satellite observations of modulation of surface winds by typhoon‐induced upper ocean cooling. Geophysical research letters, 30(3).

  • Ling, Z., Wang, G., Wang, C., & Fan, Z. S. (2011). Different effects of tropical cyclones generated in the South China Sea and the northwest Pacific on the summer South China Sea circulation. Journal of oceanography, 67(3), 347–355.

    Article  Google Scholar 

  • Ma, Y., Zhang, S., Qi, Y., & Jing, Z. (2019). Upper ocean near-inertial response to the passage of two sequential typhoons in the northwestern South China Sea. Science China Earth Sciences, 62(5), 863–871.

    Article  Google Scholar 

  • Mei, W., Primeau, F., McWilliams, J. C., & Pasquero, C. (2013). Sea surface height evidence for long-term warming effects of tropical cyclones on the ocean. Proceedings of the National Academy of Sciences, 110(38), 15207–15210.

    Article  Google Scholar 

  • Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., & Clough, S. A. (1997). Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. Journal of Geophysical Research: Atmospheres, 102(D14), 16663–16682.

    Article  Google Scholar 

  • NCEP, 2000. NCEP fnl operational model global tropospheric analyses, continuing from July 1999. URL: https://doi.org/https://doi.org/10.5065/D6M043C6.

  • Pasquero, C., & Emanuel, K. (2008). Tropical cyclones and transient upper-ocean warming. Journal of Climate, 21(1), 149–162.

    Article  Google Scholar 

  • Paulson, C. A. (1970). The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer. Journal of Applied Meteorology, 9(6), 857–861.

    Article  Google Scholar 

  • Price, J. F. (1981). Upper ocean response to a hurricane. Journal of Physical Oceanography, 11(2), 153–175.

    Article  Google Scholar 

  • Price, J. F., Sanford, T. B., & Forristall, G. Z. (1994). Forced stage response to a moving hurricane. Journal of Physical Oceanography, 24(2), 233–260.

    Article  Google Scholar 

  • Rintoul, S. R., & England, M. H. (2002). Ekman transport dominates local air–sea fluxes in driving variability of Subantarctic Mode Water. Journal of Physical Oceanography, 32(5), 1308–1321.

    Article  Google Scholar 

  • Robson, J. I., Sutton, R. T., & Smith, D. M. (2012). Initialized decadal predictions of the rapid warming of the North Atlantic Ocean in the mid 1990s. Geophysical Research Letters, 39(19).

  • Sallée, J. B., Speer, K. G., & Rintoul, S. R. (2010). Zonally asymmetric response of the Southern Ocean mixed-layer depth to the Southern Annular Mode. Nature Geoscience, 3(4), 273.

    Article  Google Scholar 

  • Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Wang, W., & Powers, J. G. (2008). A description of the Advanced Research WRF version 3. NCAR Technical note-475+ STR.

  • Sriver, R. L., Goes, M., Mann, M. E., & Keller, K. (2010). Climate response to tropical cyclone‐induced ocean mixing in an Earth system model of intermediate complexity. Journal of Geophysical Research: Oceans, 115(C10).

  • Sriver, R. L., & Huber, M. (2007). Observational evidence for an ocean heat pump induced by tropical cyclones. Nature, 447(7144), 577.

    Article  Google Scholar 

  • Sun, J., Wang, D., Hu, X., Ling, Z., & Wang, L. (2019). Ongoing Poleward Migration of Tropical Cyclone Occurrence Over the Western North Pacific Ocean. Geophysical Research Letters, 46(15), 9110–9117.

    Article  Google Scholar 

  • Sun, J., Wang, G., Zuo, J., Ling, Z., & Liu, D. (2017). Role of surface warming in the northward shift of tropical cyclone tracks over the South China Sea in November. Acta Oceanologica Sinica, 36(5), 67–72.

    Article  Google Scholar 

  • Tao, W. K., Shi, J. J., Chen, S. S., Lang, S., Lin, P. L., Hong, S. Y., & Hou, A. (2011). The impact of microphysical schemes on hurricane intensity and track. Asia-Pacific Journal of Atmospheric Sciences, 47(1), 1–16.

    Article  Google Scholar 

  • Venugopal, T., Ali, M. M., Bourassa, M. A., Zheng, Y., Goni, G. J., Foltz, G. R., & Rajeevan, M. (2018). Statistical Evidence for the Role of Southwestern Indian Ocean Heat Content in the Indian Summer Monsoon Rainfall. Scientific reports, 8(1), 12092.

    Article  Google Scholar 

  • Vincent, E. M., Madec, G., Lengaigne, M., Vialard, J., & Koch-Larrouy, A. (2013). Influence of tropical cyclones on sea surface temperature seasonal cycle and ocean heat transport. Climate dynamics, 41(7–8), 2019–2038.

    Article  Google Scholar 

  • Wada, A., & Chan, J. C. L. (2008). Relationship between typhoon activity and upper ocean heat content. Geophysical Research Letters, 35(17).

  • Wada, A., Niino, H., & Nakano, H. (2009). Roles of vertical turbulent mixing in the ocean response to Typhoon Rex (1998). Journal of oceanography, 65(3), 373–396.

    Article  Google Scholar 

  • Wang, G., Su, J., Ding, Y., & Chen, D. (2007). Tropical cyclone genesis over the South China Sea. Journal of Marine Systems, 68(3–4), 318–326.

    Article  Google Scholar 

  • Wang, G., Wu, L., Johnson, N. C., & Ling, Z. (2016). Observed three-dimensional structure of ocean cooling induced by Pacific tropical cyclones. Geophysical Research Letters, 43(14), 7632–7638.

    Article  Google Scholar 

  • Wang, X., Wang, C., Han, G., Li, W., & Wu, X. (2014). Effects of tropical cyclones on large-scale circulation and ocean heat transport in the South China Sea. Climate dynamics, 43(12), 3351–3366.

    Article  Google Scholar 

  • Wu, L., Wang, B., & Geng, S. (2005). Growing typhoon influence on East Asia. Geophysical Research Letters, 32(18).

  • Wu, R., Zhang, H., Chen, D., Li, C., & Lin, J. (2018). Impact of Typhoon Kalmaegi (2014) on the South China Sea: Simulations using a fully coupled atmosphere-ocean-wave model. Ocean Modelling, 131, 132–151.

    Article  Google Scholar 

  • Zhang, H., Chen, D., Zhou, L., Liu, X., Ding, T., & Zhou, B. (2016). Upper ocean response to typhoon Kalmaegi (2014). Journal of Geophysical Research: Oceans, 121(8), 6520–6535.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Basic Scientific Fund for National Public Research Institutes of China (2020Q05), the National Natural Science Foundation of China (41706034 and 41376038), Laboratory for Regional Oceanography and Numerical Modeling, Qingdao National Laboratory for Marine Science and Technology (2019A02); National Science and Technology Major Project (2016ZX05057015), National Programme on Global Change and Air-Sea Interaction (GASI-03-01-01-02 and GASI-IPOVAI-01-05), and NSFC-Shandong Joint Fund for Marine Science Research Centers (U1606405).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia Sun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, L., Sun, J., Hui, Z. et al. The Ocean Heat Content Changes in the South China Sea due to Tropical Cyclones with Different Tracks. Pure Appl. Geophys. 178, 269–286 (2021). https://doi.org/10.1007/s00024-020-02630-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-020-02630-w

Keywords

Navigation