Skip to main content

Advertisement

Log in

The endemic halophyte Sarcocornia carinata Fuente, Rufo & Sánchez-Mata (Chenopodiaceae) in relation to environmental variables: elemental composition and biominerals

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

We propose a thorough study of the succulent halophyte Sarcocornia carinata endemic to the saline lagoons of the center of the Iberian Peninsula. We describe its elemental composition and possible seasonal variation in relation to edaphic and climatic variables, identify biominerals and analyze the distribution of salt ions and biominerals in tissue.

Methods

Plants and edaphic samples were collected in the four seasons of 1 year. Soils were analyzed for their pH, EC, color, and bioavailable concentration of Na+, K+, Mg2+, Ca2+, Cl, SO42−. Soils and plants were analyzed for their total elemental and mineralogical composition. The distribution of elements and minerals in tissues was studied by scanning electron microscopy.

Results

Despite the variations observed in the edaphic and climatic variables, the variables studied in the plants varied slightly throughout the year. In the plants, Mg was the element that reflected climatic changes the most, while the K and Ca concentrations did not vary. Salty precipitates and crystallizations were distributed mainly in the epidermis, water storage parenchyma, cortex, and vascular vessels. Several crystals observed were compatible with halite, gypsum, glushinskite and weddellite.

Conclusions

The study corroborates that inland S. carinata behaves in the same way as other littoral succulent euhalophytes and reinforces the hypothesis that the concentration of elements and quantitative abundance pattern depend largely on the main adaptation mechanisms of halophytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aslam R, Bostan N, Amen N, Maria M, Safdar W (2011) A critical review on halophytes: salt tolerant plants. J Med Plants Res 5(33):7108–7118

    CAS  Google Scholar 

  • Bautista I, Boscaiu MT, Lindón A, Llinares JV, Lull C, Donat-Torres MP, Mayoral O (2016) Environmentally induced changes in antioxidant phenolic compounds levels in wild plants. Acta Physiol Plant 38(9):1–15. https://doi.org/10.1007/s11738-015-2025-2

    Article  CAS  Google Scholar 

  • Ben Hamed K, Chibani F, Abdelly C, Magne C (2014) Growth, sodium uptake and antioxidant responses of coastal plants differing in their ecological status under increasing salinity. Biologia 69(2):193–201

    Article  CAS  Google Scholar 

  • Bertin RL, Gonzaga LV, Borges GSC, Azevedo MS, Maltez HF, Heller M, Micke GA, Ballod LB, Fett R (2014) Nutrient composition and identification/quantification of major phenolic compounds in Sarcocornia ambigua (Amaranthaceae) using HPLC-EIS-MS/MS. Food Res Int 55:404–411

    Article  CAS  Google Scholar 

  • Bertin RL, Maltez HF, Gois J, Borges DLG, Cmapelo G, Gonzaga LV, Fett R (2016) Mineral composition and bioaccessibility in Sarcocornia ambigua using ICP-MS. J Food Compos Anal 47:45–51

    Article  CAS  Google Scholar 

  • Brooks RR (1998) Plants that hyperaccumulate heavy metals. CAB International, Cambridge

    Google Scholar 

  • Burger A, Lichtscheidl I (2019) Strontium in the environment: review about reactions of plants towards. Sci Total Environ 653:1458–1512

    Article  CAS  Google Scholar 

  • Chaudhary D (2019) Ion accumulation pattern of halophytes. In: Hasanuzzaman M, Shabala S, Fujiita M (eds) Halophytes and climate change: adaptative mechanisms and potential uses. CAB International, Pondicherry, pp 137–151

    Chapter  Google Scholar 

  • Cirujano S (1980) Las lagunas manchegas y su vegetación I. Anal Jardín Bot Mad 37(1):155–191

    Google Scholar 

  • Donovan L, Richards J, Schaber E (1997) Nutrient relations of the halophytic shrub, Sarcobatus vermiculatus, along a soil salinity gradient. Plant Soil 190:105–117

    Article  CAS  Google Scholar 

  • Flowers T, Colmer T (2008) Salinity tolerance in halophytes. New Phytol 179:945–963

    Article  CAS  Google Scholar 

  • Flowers T, Munns R, Colmer T (2015) Sodium chloride toxicity and the cellular basis of salt tolerance in halophytes. Ann Bot-London 115:419–431

    Article  CAS  Google Scholar 

  • Franceschi V, Schueren A (1986) Incorporation of strontium into plant calcium oxalate crystals. Protoplasma 130:199–205

    Article  CAS  Google Scholar 

  • Fuente V, Rufo L, Rodríguez N, Amils R, Zuluaga J (2010) Metal accumulation screening on the Río Tinto flora (Huelva, Spain). Biol Trace Elem Res 134:318–341

    Article  CAS  Google Scholar 

  • Fuente V, Oggerin M, Rufo L, Rodríguez N, Ortuñez E, Sánchez-Mata D, Amils R (2013) A micromorphological and phylogenetic study of Sarcocornia a.J. Scott (Chenopodiaceae) on the Iberian Peninsula. Plant Biosyst 147:158–173

    Article  Google Scholar 

  • Fuente V, Rufo L, Rodríguez N, Sánchez-Mata D, Franco A, Amils R (2015) A study of Sarcocornia A.J. Scott (Chenopodiaceae) from Western Mediterranean Europe. Plant Biosyst 150(2):343–356

    Article  Google Scholar 

  • Fuente V, Rufo L, Sánchez-Gavilán I, Ramírez E, Rodríguez N, Amils R (2018) Plant tissues and embryos biominerals in Sarcocornia pruinosa, a halophyte from the Río Tinto salt marshes. Minerals 8(11). https://doi.org/10.3390/min8110505

  • García-Caparrós P, Llanderal A, Pestana M, Correira PJ, Lao MT (2017) Nutritional and physiological responses of the dicotyledonous halophyte Sarocornia fruticosa to salinity. Aust J Bot 65(7):573–581

    Article  Google Scholar 

  • Gil R, Lull C, Boscaiu M, Bautista I, Lidón A, Vicente O (2011) Soluble carbohydrates as osmolytes in several halophytes from a mediterranean salt marsh. Not Bot Horti Agrobo 39(2):9–17

    Article  CAS  Google Scholar 

  • Gil R, Bautista I, Boscaiu M, Lindón A, Wankhade S, Sánchez H, Llinares J, Vicente O (2014) Responses of five mediterranean halophytes to seasonal changes in environmental conditions. AOB Plants 6, plu049 https://doi.org/10.1093/aobpla/plu049

  • Grigore M, Toma C (2017) Anatomical adaptations of halophytes: a review of classic literature and recent findings. Springer International Publishing, Switzerland

    Book  Google Scholar 

  • Grigore M, Boscaiu M, Vicente O (2011) Assessment of the relevance of osmolyte biosynthesis for salt tolerance of halophytes under natural conditions. Eur J Plant Sci Biotechnol 5:12–49

    Google Scholar 

  • Grigore M, Boscaiu M, Llinares J, Vicente O (2012) Mitigation of salt stress-induced inhibition of Plantago crassifolia reproductive development by supplemental calcium or magnesium. Not Bot Horti Agrobo 40:58–66

    Article  CAS  Google Scholar 

  • Hameed A, Gulzar S, Aziz I, Hussain T, Gul B, Khan MA (2015) Effects of salinity and ascorbic acid on growth, water status and antioxidant system in a perennial halophyte. AOB Plants 7(pvl004) https://doi.org/10.1093/aobplan/pvl004

  • Hanger B (1979) The movement of calcium in plants. Commun Soil Sci Plant 10(1–2):171–193

    Article  CAS  Google Scholar 

  • Kamran M, Parveen A, Ahmar S, Malik Z, Hussain S, Chattja MS, Saleem MH, Adil M, Heidari P, Chen J (2020) An overview of hazardous impacts of soil salinity in crops, tolerance, mechanisms, and amelioration through selenium supplementation. Int J Mol Sci 21(1):148

    Article  CAS  Google Scholar 

  • Karabourniotis G, Horner HT, Bresta P, Nikolopoulos D, Liakopoulos G (2020) New insights into the functions of carbon-calcium inclusions in plants. New Phytol. https://doi.org/10.1111/nph.16763

  • Krüger H, Peinemann N (1996) Coastal plain halophytes and their relation to soil ionic composition. Plant Ecol 122(2):143–150

    Article  Google Scholar 

  • Kummerow J (1983) Comparative phenology of Mediterranean-type plant communities. In: Kruger FJ, Mitchell DT, Jarvis JUM (eds) Mediterranean-type ecosystems. Ecological studies (analysis and synthesis), vol 43. Springer, Berlin. https://doi.org/10.1007/978-3-642-68935-2_17

    Chapter  Google Scholar 

  • Matinzadeh Z, Breckle S, Mirmassoumi M, Akhani H (2013) Ionic relationships in some halophytic Iranian Chenopodiaceae and their rhizospheres. Plant Soil 372:523–539

    Article  CAS  Google Scholar 

  • Molina J, Pertiñez C, de la Cruz M (2001) Datos sobre la relación suelo-vegetación en los saladares de Cordobilla (Albacete, España). Revista de Estudios Albacetenses 1(1):217–232

    Google Scholar 

  • Monje P, Baran E (2005) Evidence of formation of glushinskite as a biomineral in Cactaceae species. Phytochemistry 66:611–614

    Article  CAS  Google Scholar 

  • Pongrac P, Vogel-Mikus K, Regbar M, Kaligaric M, Vavpetic P, Kelemen M, Grlj N, Shelef O, Golan-Goldhirsh A, Rachmilevitch S, Pelicon P (2013) On the distribution and evaluation of Na, Mg and Cl in leaves of selected halophytes. Nucl Instrum Meth B 306:144–159

  • Rhoades J (1982) Soluble salts. In: Page A (ed) Methods of soil analysis part 2. Agronomy monograph n°9, American Society of Agronomy, Madison, pp 167–179

    Google Scholar 

  • Rivas-Martínez S (2007) Mapa de series, geoseries y geopermaseries de vegetación de España [Memoria del mapa de vegetación potencial de España]. Parte I. Itinera Geobot 17:5–436

    Google Scholar 

  • Rivas-Martínez S (2011) Mapa de series, geoseries y geopermaseries de vegetación de España [Memoria del mapa de vegetación potencial de España]. Parte II. Itinera Geobot 18(1):5–800

    Google Scholar 

  • Rodríguez N, Menéndez N, Tornero J, Amils R, Fuente V (2005) Internal iron biomineralization in Imperata cylindrica, a perennial grass: chemical composition, speciation and plant localization. New Phytol 165:781–789

    Article  Google Scholar 

  • Shabala S, Pottosin I (2014) Regulation of potassium transport in plants under hostile conditions: implications for abiotic and biotic stress tolerance. Physiol Plantarum 151:257–279

    Article  CAS  Google Scholar 

  • Souid A, Gabriele M, Longo V, Pucci L, Bellani L, Smaoui A, Abdelly C, Ben Hamed K (2016) Salt tolerance of the halophyte Limonium delicatulum is more associated with antioxidant enzyme activities than phenolic compounds. Funct Plant Biol 43(7):607–619

    Article  CAS  Google Scholar 

  • Sousa E (2019) Are calcium oxalate crystals a dynamic calcium store in plants? New Phytol 223:1707–1711

    Article  Google Scholar 

  • Tobe K, Li X, Omasa K (2002) Effect of sodium magnesium and calcium salts on seed germination and radicle survival of a halophyte, Kalidium caspicum (Chenopodiaceae). Aust J Bot 50:163–169

    Article  CAS  Google Scholar 

  • Ventura Y, Myrzabayeva M, Alikulov Z, Omarov R, Khozin-Goldberg I (2014) Effects of salinity on flowering, morphology, biomass accumulation and leaf metabolites in an edible halophyte. AOB Plants 6:plu053. https://doi.org/10.1093/aobpla/plu053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weiner S, Dove P (2003) An overview of biomineralization processes. Revi Mineral Geochem 24(1):1–29

    Google Scholar 

  • Zuluaga J, Rodríguez N, Rivas-Ramírez I, Fuente V, Rufo L, Amils R (2011) An improved semiquantitative method for elemental analysis of plants using inductive coupled plasma mass spectrometry. Biol Trace Elem Res 144:1302–1317

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by the 2016 grant program of the Vicerrectorado de Investigación e Innovación de la Universidad Francisco de Vitoria. We would also like to express our gratitude to the personnel of the Servicio Interdepartamental de Investigación of the Universidad Autónoma de Madrid (SIDI-UAM, Spain) for their service. We would like to thanks to the three anonymous reviewers their valuable remarks and comments which contributed to the quality of this work.

Author information

Authors and Affiliations

Authors

Contributions

MTIL carried out the edaphic analysis. VF oversaw the sampling and plant analysis. LR originally planned the research but also carried out the plant analyses and led the writing. All the authors critically revised the manuscript.

Corresponding author

Correspondence to L. Rufo.

Additional information

Responsible Editor: Honghua He.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rufo, L., Iglesias-López, M.T. & de la Fuente, V. The endemic halophyte Sarcocornia carinata Fuente, Rufo & Sánchez-Mata (Chenopodiaceae) in relation to environmental variables: elemental composition and biominerals. Plant Soil 460, 189–209 (2021). https://doi.org/10.1007/s11104-020-04777-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-020-04777-w

Keywords

Navigation