Skip to main content
Log in

DC programming and DCA for enhancing physical layer security via relay beamforming strategies

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

Beside of cryptography-the primary traditional methods for ensuring information security and confidentiality, the appearance of the physical layer security approach plays an important role for not only enabling the data transmission confidentially without relying on higher-layer encryption, but also enhancing confidentiality of the secret key distribution in cryptography. Many techniques are employed in physical layers to improve secure transmission including cooperative relaying and beamforming technique. In this paper, we consider the secrecy rate maximization problems using two techniques mentioned above with two different relaying protocols: Amplify-and-Forward and Decode-and-Forward. The optimization problems with the aim of maximizing secrecy rate subject to total and individual relay power constraints are formulated as nonconvex problems, which can be reformulated as DC (difference of two convex functions) programs and thus can be solved by DC Algorithms (DCA). The special structure of feasible set is exploited which results to an efficient DC decomposition in the sense that it leads to convex subproblems that can be explicitly solved. The numerical results show that the proposed DCA schemes are better than the existing methods in terms of both runtime and secrecy rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Al-Shatri, A., Weber, T.: Achieving the maximum sum rate using DC programming in cellular networks. IEEE Trans. Signal Process. 60(3), 1331–1341 (2012)

    Article  MathSciNet  Google Scholar 

  2. Cheng, Y., Pesavento, M.: Joint optimization of source power allocation and distributed relay beamforming in multiuser peer-to-peer relay networks. Signal Process. IEEE Trans. 60(6), 2962–2973 (2012)

    Article  MathSciNet  Google Scholar 

  3. Csiszár, K.J.: Broadcast channels with confidential messages. IEEE Trans. Inf. Theory 24(3), 339–348 (1978)

    Article  MathSciNet  Google Scholar 

  4. Dong, L., Han, Z., Petropulu, A., Poor, H.: Amplify-and-forward based cooperation for secure wireless communications. In: Acoustics, Speech and Signal Processing, 2009. ICASSP 2009. IEEE International Conference on, pp. 2613–2616 (2009)

  5. Dong, L., Han, Z., Petropulu, A., Poor, H.: Improving wireless physical layer security via cooperating relays. IEEE Trans. Signal Process. 58(3), 1875–1888 (2010)

    Article  MathSciNet  Google Scholar 

  6. Ekrem, E., Ulukus, S.: Secrecy in cooperative relay broadcast channels. Inf. Theory IEEE Trans. 57(1), 137–155 (2011)

    Article  MathSciNet  Google Scholar 

  7. Fazeli-Dehkordy, S., ShahbazPanahi, S., Gazor, S.: Multiple peer-to-peer communications using a network of relays. Signal Process. IEEE Trans. 57(8), 3053–3062 (2009)

    Article  MathSciNet  Google Scholar 

  8. Goel, S., Negi, R.: Guaranteeing Secrecy using Artificial Noise. Wireless Commun. IEEE Trans. 7(6), 2180–2189 (2008)

    Article  Google Scholar 

  9. Havary-Nassab, V., ShahbazPanahi, S., Grami, A.: Joint receive-transmit beamforming for multi-antenna relaying schemes. Signal Process. IEEE Trans. 58(9), 4966–4972 (2010)

    Article  MathSciNet  Google Scholar 

  10. He, X., Yener, A.: Cooperation with an untrusted relay: A secrecy perspective. IEEE Trans. Inf. Theor. 56(8), 3807–3827 (2010)

    Article  MathSciNet  Google Scholar 

  11. Hero, A.: Secure space-time communication. Inf. Theory IEEE Trans. 49(12), 3235–3249 (2003)

    Article  MathSciNet  Google Scholar 

  12. Jeong, C., Kim, I.M., Kim, D.I.: Joint Secure Beamforming Design at the Source and the Relay for an Amplify-and-Forward MIMO Untrusted Relay System. Signal Process. IEEE Trans. 60(1), 310–325 (2012)

    Article  MathSciNet  Google Scholar 

  13. Jing, Y., Jafarkhani, H.: Network beamforming using relays with perfect channel information. Inf. Theory IEEE Trans. 55(6), 2499–2517 (2009)

    Article  MathSciNet  Google Scholar 

  14. Kha, H.H., Tuan, H.D., Nguyen, H.H.: Fast global optimal power allocation in wireless network by local DC programming. IEEE Trans. Wireless Commun. 11(2), 510–512 (2012)

    Article  Google Scholar 

  15. Khisti, A., Tchamkerten, A., Wornell, G.W.: Secure broadcasting over fading channels. Inf. Theory IEEE Trans. 54(6), 2453–2469 (2008)

    Article  MathSciNet  Google Scholar 

  16. Le Thi, H.A.: Contribution à l’optimisation non convexe et l’optimisation globale: Théorie. Algorithmes et Applications. Habilitation à Diriger des Recherches. Université de Rouen, France (1997)

    Google Scholar 

  17. Le Thi, H.A.: An efficient algorithm for globally minimizing a quadratic function under convex quadratic constraints. Math. Program. 87(3), 401–426 (2000)

    Article  MathSciNet  Google Scholar 

  18. Le Thi, H.A., Huynh, V.N., Pham Dinh, T.: DC Programming and DCA for General DC Programs, vol. 282. Springer, Berlin (2014)

    MATH  Google Scholar 

  19. Le Thi, H.A., Van Huynh, N., Pham Dinh, T.: Convergence Analysis of Difference-of-Convex Algorithm with Subanalytic Data. Optim. Theory Appl. 179(1), 103–126 (2018)

    Article  MathSciNet  Google Scholar 

  20. Le Thi, H.A., Nguyen, M.C., Pham Dinh, T.: A DC Programming Approach for Finding Communities in Networks. Neural Comput. 26(12), 2827–2854 (2014)

    Article  MathSciNet  Google Scholar 

  21. Le Thi, H.A., Nguyen, M.C., Pham Dinh, T.: Self-Organizing Maps by Difference of Convex functions optimization. Data Min. Knowl. Disc. 28, 1336–1365 (2014)

    Article  MathSciNet  Google Scholar 

  22. Le Thi, H.A., Nguyen, Q.T., Phan, K.T., Pham Dinh, T.: DC Programming and DCA Based Cross-Layer Optimization in Multi-hop TDMA Networks, pp. 398–408. Intelligent Information and Database Systems: 5th Asian Conference, ACIIDS 2013, Kuala Lumpur, Malaysia, March 18-20, 2013, Proceedings, Part II. Springer Berlin Heidelberg, Berlin, Heidelberg (2013)

  23. Le Thi, H.A., Pham Dinh, T.: The DC (Difference of Convex Functions) Programming and DCA Revisited with DC Models of Real World Nonconvex Optimization Problems. Ann. Oper. Res. 133, 23–46 (2005)

    Article  MathSciNet  Google Scholar 

  24. Le Thi, H.A., Pham Dinh, T.: Network utility maximisation: A DC programming approach for Sigmoidal utility function. In: 2013 International Conference on Advanced Technologies for Communications (ATC 2013), pp. 50–54 (2013)

  25. Le Thi, H.A., Pham Dinh, T.: DC programming in communication systems: challenging problems and methods. Vietnam J. Comput. Sci. 1(1), 15–28 (2014)

    Article  Google Scholar 

  26. Le Thi, H.A., Pham Dinh, T.: DC programming and DCA: thirty years of developments. Math. Program. 169, 5–68 (2018)

    Article  MathSciNet  Google Scholar 

  27. Le Thi, H.A., Ta, A.S., Pham Dinh, T.: An efficient DCA based algorithm for power control in large scale wireless networks. Appl. Math. Comput. 318, 215–226 (2018)

    MathSciNet  MATH  Google Scholar 

  28. Le Thi, H.A., Vo, X.T., Le, H.M., Pham Dinh, T.: DC approximation approaches for sparse optimization. Eur. J. Oper. Res. 244(1), 26–46 (2015)

    Article  MathSciNet  Google Scholar 

  29. Liang, Y., Poor, H., Shamai, S.: Secure communication over fading channels. Inf. Theory IEEE Trans. 54(6), 2470–2492 (2008)

    Article  MathSciNet  Google Scholar 

  30. Munoz-Medina, O., Vidal, J., Agustin, A.: Linear transceiver design in nonregenerative relays with channel state information. Signal Process. IEEE Trans. 55(6), 2593–2604 (2007)

    Article  MathSciNet  Google Scholar 

  31. Negi, R., Goel, S.: Secret communication using artificial noise. In: Vehicular Technology Conference, 2005. VTC-2005-Fall. 2005 IEEE 62nd, vol. 3, pp. 1906–1910 (2005)

  32. Parada, P., Blahut, R.: Secrecy capacity of SIMO and slow fading channels. In: Information Theory, 2005. ISIT 2005. Proceedings. International Symposium on, pp. 2152–2155 (2005)

  33. Pham Dinh, T., Le Thi, H.A.: Convex analysis approach to DC programming: Theory, algorithms and applications. Acta Math. Vietnamica 22(1), 289–357 (1997)

    MathSciNet  MATH  Google Scholar 

  34. Pham Dinh, T., Le Thi, H.A.: Optimization algorithms for solving the trust region subproblem. SIAM J. Optim. 8, 476–505 (1998)

    Article  MathSciNet  Google Scholar 

  35. Pham Dinh, T., Le Thi, H.A.: Recent Advances in DC Programming and DCA, vol. 8342. Springer, Berlin Heidelberg (2014)

    MATH  Google Scholar 

  36. Shafiee, S., Ulukus, S.: Achievable rates in gaussian miso channels with secrecy constraints. In: Information Theory, 2007. ISIT 2007. IEEE International Symposium on, pp. 2466–2470 (2007)

  37. ShahbazPanahi, S., Dong, M.: Achievable rate region under joint distributed beamforming and power allocation for two-way relay networks. Wireless Commun. IEEE Trans. 11(11), 4026–4037 (2012)

    Article  Google Scholar 

  38. Ta, A.S., Le Thi, H.A., Khadraoui, D., Pham Dinh, T.: Solving QoS Routing Problems by DCA, pp. 460–470. Intelligent Information and Database Systems: Second International Conference, ACIIDS, Hue City, Vietnam, March 24-26, 2010. Proceedings, Part II. Springer Berlin Heidelberg, Berlin, Heidelberg (2010)

  39. Tang, X., Liu, R., Spasojevic, P., Poor, H.: Multiple access channels with generalized feedback and confidential messages. In: Information Theory Workshop, 2007. ITW ’07. IEEE, pp. 608–613 (2007)

  40. Tekin, E., Serbetli, S., Yener, A.: On Secure Signaling for the Gaussian Multiple Access Wire-tap Channel. In: Signals, Systems and Computers, 2005. Conference Record of the Thirty-Ninth Asilomar Conference on, pp. 1747–1751 (2005)

  41. Tekin, E., Yener, A.: The general gaussian multiple-access and two-way wiretap channels: Achievable rates and cooperative jamming. Inf. Theory IEEE Trans. 54(6), 2735–2751 (2008)

    Article  MathSciNet  Google Scholar 

  42. Tekin, E., Yener, A.: The Gaussian Multiple Access Wire-Tap Channel. Inf. Theory IEEE Trans. 54(12), 5747–5755 (2008)

    Article  MathSciNet  Google Scholar 

  43. Vucic, N., Schubert, M.: DC programming approach for resource allocation in wireless networks. IEEE, Proceedings of the 8th International Symposium on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks pp. 380–386 (2010)

  44. Wang, C., Wang, H.M., Ng, D., Xia, X.G., Liu, C.: Joint Beamforming and Power Allocation for Secrecy in Peer-to-Peer Relay Networks. Wireless Commun. IEEE Trans. 14(6), 3280–3293 (2015)

    Article  Google Scholar 

  45. Wyner, A.D.: The wire-tap channel. Bell Syst. Tech. J. 54, 1355–1387 (1975)

    Article  MathSciNet  Google Scholar 

  46. Zhang, J., Gursoy, M.: Collaborative relay beamforming for secrecy. In: Communications (ICC), 2010 IEEE International Conference on, pp. 1–5 (2010)

  47. Zhang, J., Gursoy, M.: Relay beamforming strategies for physical-layer security. In: Information Sciences and Systems (CISS), 2010 44th Annual Conference on, pp. 1–6 (2010)

  48. Zheng, G., Arapoglou, P., Ottersten, B.: Physical layer security in multibeam satellite systems. Wireless Commun. IEEE Trans. 11(2), 852–863 (2012)

    Article  Google Scholar 

  49. Zhou, J., Cao, R., Gao, H., Zhang, C., Lv, T.: Secure Beamforming Design in Wiretap MISO Interference Channels. In: Vehicular Technology Conference (VTC Spring), 2015 IEEE 81st, pp. 1–5 (2015)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thi Thuy Tran.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tran, T.T., Pham Thi, H.A., Pham Dinh, T. et al. DC programming and DCA for enhancing physical layer security via relay beamforming strategies. Optim Lett 15, 2377–2405 (2021). https://doi.org/10.1007/s11590-020-01696-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-020-01696-8

Keywords

Navigation