Skip to main content
Log in

The Unfolded Protein Response in the Human Infant Brain and Dysregulation Seen in Sudden Infant Death Syndrome (SIDS)

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Low orexin levels in the hypothalamus, and abnormal brainstem expression levels of many neurotransmitter and receptor systems in infants who died suddenly during a sleep period and diagnosed as sudden infant death syndrome (SIDS), may be linked to abnormal protein unfolding. We studied neuronal expression of the three unfolded protein response (UPR) pathways in the human infant brainstem, hypothalamus, and cerebellum: activating transcription factor 6 (ATF6), phosphorylated inositol-requiring enzyme 1 (IRE1), and phosphorylated protein-kinase (PKR)-like endoplasmic reticulum (ER) kinase (pPERK). Percentages of positively stained neurons were examined via immunohistochemistry and compared between SIDS (n = 28) and non-SIDS (n = 12) infant deaths. Further analysis determined the effects of the SIDS risk factors including cigarette smoke exposure, bed-sharing, prone sleeping, and an upper respiratory tract infection (URTI). Compared to non-SIDS, SIDS infants had higher ATF6 in the inferior olivary and hypoglossal nuclei of the medulla, higher pIRE1 in the dentate nucleus of the cerebellum, and higher pPERK in the cuneate nucleus and hypothalamus. Infants who were found prone had higher ATF6 in the hypoglossal and the locus coeruleus of the pons. Infants exposed to cigarette smoke had higher ATF6 in the vestibular and cuneate nuclei of the medulla. Infants who were bed-sharing had higher pPERK in the dorsal raphe nuclei of the pons and the Purkinje cells of the cerebellum. This study indicates that subgroups of SIDS infants, defined by risk exposure, had activation of the UPR in several nuclei relating to proprioception and motor control, suggesting that the UPR underlies the neuroreceptor system changes responsible for these physiological functions, leading to compromise in the pathogenesis of SIDS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Notes

  1. This study’s cohort differs to our previous one utilised by Hunt et al. [5] in that we have 7 fewer non-SIDS cases and one extra SIDS case as not all non-SIDS cases had a medulla section available at the correct mid to rostral level. Analyses for pPERK in the hypothalamus and the pons were run using the values obtained by Hunt et al. [5] but restricted to the cases in this study.

Abbreviations

AN:

Arcuate nucleus

ATF6:

Activating transcription factor 6

C/EBP:

CCAAT/enhancer binding protein

CHOP:

C/EBP homologous protein

CUN:

Cuneate nucleus

DAB:

3,3′-Diaminobenzidine

DMNV:

Dorsal motor nucleus of the vagus

DN:

Dentate nucleus

DR:

Dorsal raphe nucleus

ER:

Endoplasmic reticulum

FFPE:

Formalin-fixed paraffin-embedded

GABA:

γ-Aminobutyric acid

GC:

Golgi cells

GL:

Granular layer

IHC:

Immunohistochemistry

ION:

Inferior olivary nucleus

IRE1:

Inositol-requiring enzyme 1

LC:

Locus coeruleus

ML:

Molecular layer

NBT/BCIP:

Nitro blue tetrazolium/5-bromo-4-chloro-3-indolyl

NHS:

Normal horse serum

NMDA:

N-methyl-D-aspartate

NTS:

Nucleus tractus solitarius

OxA:

Orexin isoform A

PN:

Pontine nucleus

pPERK:

Phosphorylated protein kinase (PKR)-like ER kinase

PC:

Purkinje cells

SIDS:

Sudden infant death syndrome

UPR:

Unfolded protein response

URTI:

Upper respiratory tract infection

VEST:

Vestibular nucleus

XII:

Hypoglossal nucleus

References

  1. Krous HF, Beckwith JB, Byard RW, Rognum TO, Bajanowski T, Corey T, Cutz E, Hanzlick R et al (2004) Sudden infant death syndrome and unclassified sudden infant deaths: a definitional and diagnostic approach. Pediatrics. Am Acad Pediatr 114(1):234–238. https://doi.org/10.1542/PEDS.114.1.234

    Article  PubMed  Google Scholar 

  2. Australian Bureau of Statistics (2016) 3303.0 - Causes of Death, Australia, 2016. Available at: https://www.abs.gov.au/AUSSTATS/abs@.nsf/Previousproducts/3303.0TechnicalNote22016?opendocument&tabname=Notes&prodno=3303.0&issue=2016&num=&view= (Accessed: 19 Feb 2020).

  3. Hunt CE (1992) The cardiorespiratory control hypothesis for sudden infant death syndrome. Clin Perinatol. Elsevier 19:757–771. https://doi.org/10.1016/s0095-5108(18)30429-9

    Article  CAS  PubMed  Google Scholar 

  4. Franco P, Kato I, Richardson HL, Yang JSC, Montemitro E, Horne RSC (2010) Arousal from sleep mechanisms in infants. Sleep Med 11:603–614. https://doi.org/10.1016/j.sleep.2009.12.014

    Article  PubMed  Google Scholar 

  5. Hunt NJ, Waters KA, Rodriguez ML, Machaalani R (2015) Decreased orexin (hypocretin) immunoreactivity in the hypothalamus and pontine nuclei in sudden infant death syndrome. Acta Neuropathol 130(2):185–198. https://doi.org/10.1007/s00401-015-1437-9

    Article  CAS  PubMed  Google Scholar 

  6. Hunt NJ, Waters KA, Machaalani R (2017) Promotion of the unfolding protein response in orexin/dynorphin neurons in sudden infant death syndrome (SIDS): elevated pPERK and ATF4 expression. Mol Neurobiol 54(9):7171–7185. https://doi.org/10.1007/s12035-016-0234-3

    Article  CAS  PubMed  Google Scholar 

  7. Sanderson TH, Gallaway M, Kumar R (2015) Unfolding the unfolded protein response: unique insights into brain ischemia. Int J Mol Sci 16(4):7133–7142. https://doi.org/10.3390/ijms16047133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Doyle KM et al (2011) Unfolded proteins and endoplasmic reticulum stress in neurodegenerative disorders. J Cell Mol Med. John Wiley & Sons, Ltd (10.1111) 15(10):2025–2039. https://doi.org/10.1111/j.1582-4934.2011.01374.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ogata M, Hino SI, Saito A, Morikawa K, Kondo S, Kanemoto S, Murakami T, Taniguchi M et al (2006) Autophagy is activated for cell survival after endoplasmic reticulum stress. Mol Cell Biol. American Society for Microbiology 26(24):9220–9231. https://doi.org/10.1128/mcb.01453-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Calfon M, Zeng H, Urano F, Till JH, Hubbard SR, Harding HP, Clark SG, Ron D (2002) IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature. Nat Publ Group 415(6867):92–96. https://doi.org/10.1038/415092a

    Article  CAS  PubMed  Google Scholar 

  11. Ye J, Rawson RB, Komuro R, Chen X, Davé UP, Prywes R, Brown MS, Goldstein JL (2000) ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs. Mol Cell. Cell Press 6(6):1355–1364. https://doi.org/10.1016/S1097-2765(00)00133-7

    Article  CAS  Google Scholar 

  12. Thuerauf DJ, Morrison LE, Hoover H, Glembotski CC (2002) Coordination of ATF6-mediated transcription and ATF6 degradation by a domain that is shared with the viral transcription factor, VP16. J Biol Chem. American Society for Biochemistry and Molecular Biology 277(23):20734–20739. https://doi.org/10.1074/jbc.M201749200

    Article  CAS  PubMed  Google Scholar 

  13. Yoshida H, Haze K, Yanagi H, Yura T, Mori K (1998) Identification of the cis-acting endoplasmic reticulum stress response element responsible for transcriptional induction of mammalian glucose- regulated proteins: involvement of basic leucine zipper transcription factors. J Biol Chem. American Society for Biochemistry and Molecular Biology 273(50):33741–33749. https://doi.org/10.1074/jbc.273.50.33741

    Article  CAS  PubMed  Google Scholar 

  14. Filiano JJ, Kinney HC (1994) A perspective on neuropathologic findings in victims of the sudden infant death syndrome: the triple-risk model. Neonatology 65(3–4):194–197. https://doi.org/10.1159/000244052

    Article  CAS  Google Scholar 

  15. Machaalani R, Waters KA (2014) Neurochemical abnormalities in the brainstem of the sudden infant death syndrome (SIDS). Paediatr Respir Rev. Elsevier Ltd 15(4):293–300. https://doi.org/10.1016/j.prrv.2014.09.008

    Article  PubMed  Google Scholar 

  16. Hotokezaka Y et al (2015) GSK-3β-dependent downregulation of γ-taxilin and αnAC merge to regulate ER stress responses. Cell Death Dis. Nature Publishing Group 6(4):e1719. https://doi.org/10.1038/cddis.2015.90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shen Y, Yang J, Zhao J, Xiao C, Xu C, Xiang Y (2015) The switch from ER stress-induced apoptosis to autophagy via ROS-mediated JNK/p62 signals: a survival mechanism in methotrexate-resistant choriocarcinoma cells. Exp Cell Res. Academic Press Inc. 334(2):207–218. https://doi.org/10.1016/j.yexcr.2015.04.010

    Article  CAS  PubMed  Google Scholar 

  18. Kang SJ et al (2017) Caspase-4 is essential for saikosaponin a-induced apoptosis acting upstream of caspase-2 and γ-H2AX in colon cancer cells. Oncotarget. Impact Journals LLC 8(59):100433–100448. https://doi.org/10.18632/oncotarget.22247

    Article  PubMed  PubMed Central  Google Scholar 

  19. Sakabe I, Hu R, Jin L, Clarke R, Kasid UN (2015) TMEM33: a new stress-inducible endoplasmic reticulum transmembrane protein and modulator of the unfolded protein response signaling. Breast Cancer Res Treat. Springer New York LLC 153(2):285–297. https://doi.org/10.1007/s10549-015-3536-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bettaieb A et al (2016) Anti-inflammatory actions of (−)-epicatechin in the adipose tissue of obese mice. Int J Biochem Cell Biol. Elsevier Ltd 81(Pt B):383–392. https://doi.org/10.1016/j.biocel.2016.08.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kim JY, Ko AR, Hyun HW, Min SJ, Kim JE (2017) PDI regulates seizure activity via NMDA receptor redox in rats. Sci Rep Nature Publishing Group 7. https://doi.org/10.1038/srep42491

  22. Tanimoto R et al (2009) Down-regulation of BiP/GRP78 sensitizes resistant prostate cancer cells to gene-therapeutic overexpression of REIC/Dkk-3. Int J Cancer. John Wiley & Sons, Ltd 126(7):NA-NA. https://doi.org/10.1002/ijc.24764

    Article  CAS  Google Scholar 

  23. Kaslin J, Nystedt JM, Ostergård M, Peitsaro N, Panula P (2004) The orexin/hypocretin system in zebrafish is connected to the aminergic and cholinergic systems. J Neurosci. Soc Neurosci 24(11):2678–2689. https://doi.org/10.1523/JNEUROSCI.4908-03.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tafuri S, Pavone LM, Mastellone V, Spina A, Avallone L, Vittoria A, Staiano N, Scala G (2009) Expression of orexin A and its receptor 1 in the choroid plexuses from buffalo brain. Neuropeptides. Churchill Livingstone 43(2):73–80. https://doi.org/10.1016/j.npep.2009.01.003

    Article  CAS  PubMed  Google Scholar 

  25. Morawski M, Brückner G, Jäger C, Seeger G, Arendt T (2010) Neurons associated with aggrecan-based perineuronal nets are protected against tau pathology in subcortical regions in Alzheimer’s disease. Neuroscience. Pergamon 169(3):1347–1363. https://doi.org/10.1016/j.neuroscience.2010.05.022

    Article  CAS  PubMed  Google Scholar 

  26. Mai JK, Majtanik M and Paxinos G (2015) Atlas of the human brain

  27. Paxinos G and Huang XF (1995) Atlas of the human brainstem

  28. Scheper W, Hoozemans JJM (2015) The unfolded protein response in neurodegenerative diseases: a neuropathological perspective. Acta Neuropathol. Springer Berlin Heidelberg 130(3):315–331. https://doi.org/10.1007/s00401-015-1462-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Stutzbach LD et al (2014) The unfolded protein response is activated in disease-affected brain regions in progressive supranuclear palsy and Alzheimer’s disease. Acta Neuropathol Commun. BioMed central ltd. 2(1):31. https://doi.org/10.1186/2051-5960-1-31

    Article  Google Scholar 

  30. Tan Z et al (2018) ZIKV infection activates the IRE1-XBP1 and ATF6 pathways of unfolded protein response in neural cells. J Neuroinflammation 15(1):275. https://doi.org/10.1186/s12974-018-1311-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hosoi T et al (2019) Immobilization stress induces XBP1 splicing in the mouse brain. Biochem Biophys Res Commun. Elsevier B.V. 508(2):516–520. https://doi.org/10.1016/j.bbrc.2018.11.167

    Article  CAS  PubMed  Google Scholar 

  32. Wang H, Wang X, Ke ZJ, Comer AL, Xu M, Frank JA, Zhang Z, Shi X et al (2015) Tunicamycin-induced unfolded protein response in the developing mouse brain. Toxicol Appl Pharmacol. Academic Press Inc 283(3):157–167. https://doi.org/10.1016/j.taap.2014.12.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Atkin JD, Farg MA, Walker AK, McLean C, Tomas D, Horne MK (2008) Endoplasmic reticulum stress and induction of the unfolded protein response in human sporadic amyotrophic lateral sclerosis. Neurobiology of Disease. Academic Press 30(3):400–407. https://doi.org/10.1016/J.NBD.2008.02.009

    Article  CAS  PubMed  Google Scholar 

  34. Murao N, Nishitoh H (2017) Role of the unfolded protein response in the development of central nervous system. J Biochem 162(3):155–162. https://doi.org/10.1093/jb/mvx047

    Article  CAS  PubMed  Google Scholar 

  35. Naughton M, McMahon J, Healy S, FitzGerald U (2019) Profile of the unfolded protein response in rat cerebellar cortical development. J Comp Neurol. Wiley-Liss Inc 527(17):2910–2924. https://doi.org/10.1002/cne.24718

    Article  CAS  PubMed  Google Scholar 

  36. Trobiani L, Favaloro FL, di Castro MA, di Mattia M, Cariello M, Miranda E, Canterini S, de Stefano ME et al (2018) UPR activation specifically modulates glutamate neurotransmission in the cerebellum of a mouse model of autism. Neurobiol Dis Academic Press Inc 120:139–150. https://doi.org/10.1016/j.nbd.2018.08.026

    Article  CAS  PubMed  Google Scholar 

  37. B’chir W, Maurin AC, Carraro V, Averous J, Jousse C, Muranishi Y, Parry L, Stepien G et al (2013) The eIF2α/ATF4 pathway is essential for stress-induced autophagy gene expression. Nucleic Acids Res. Oxford University Press 41(16):7683–7699. https://doi.org/10.1093/nar/gkt563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yang H et al (2020) ATF6 is a critical determinant of CHOP dynamics during the unfolded protein response. iScience. Elsevier Inc 23(2). https://doi.org/10.1016/j.isci.2020.100860

  39. Yoshida H, Matsui T, Yamamoto A, Okada T, Mori K (2001) XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell. Cell Press 107(7):881–891. https://doi.org/10.1016/S0092-8674(01)00611-0

    Article  CAS  PubMed  Google Scholar 

  40. Calton MA et al (2016) The cerebellum and SIDS: disordered breathing in a mouse model of developmental cerebellar Purkinje cell loss during recovery from hypercarbia. Front Neurol. Frontiers Research Foundation 7(MAY). https://doi.org/10.3389/fneur.2016.00078

  41. Cruz-Sánchez FF et al (1997) Cerebellar cortex delayed maturation in sudden infant death syndrome. J Neuropathol Exp Neurol. Lippincott Williams and Wilkins 56(4):340–346. https://doi.org/10.1097/00005072-199704000-00002

    Article  PubMed  Google Scholar 

  42. Cooke JD, Larson B, Oscaesson O, Sjölund B (1971) Organization of afferent connections to cuneocerebellar tract. Exp Brain Res. Springer-Verlag 13(4):359–377. https://doi.org/10.1007/BF00234337

    Article  PubMed  Google Scholar 

  43. Sillitoe RV, Fu YH, Watson C (2012) Cerebellum. In: The Mouse Nervous System. Elsevier Inc., pp. 360–397. https://doi.org/10.1016/B978-0-12-369497-3.10011-1

  44. Paul MS and M Das J (2019) Neuroanatomy, superior and inferior olivary nucleus (superior and inferior Olivary complex), StatPearls. StatPearls Publishing. Available at: http://www.ncbi.nlm.nih.gov/pubmed/31194399 (Accessed: 15 Apr 2020)

  45. Lapresle J, Hamida MB (1970) The dentato-olivary pathway: somatotopic relationship between the dentate nucleus and the contralateral inferior olive. Arch Neurol. American Medical Association 22(2):135–143. https://doi.org/10.1001/archneur.1970.00480200041004

    Article  CAS  PubMed  Google Scholar 

  46. Machaalani R, Say M, Waters KA (2009) Serotoninergic receptor 1A in the sudden infant death syndrome brainstem medulla and associations with clinical risk factors. Acta Neuropathol 117:257–265. https://doi.org/10.1007/s00401-008-0468-x

    Article  CAS  PubMed  Google Scholar 

  47. Machaalani R, Waters KA (2003) NMDA receptor 1 expression in the brainstem of human infants and its relevance to the sudden infant death syndrome (SIDS). J Neuropathol Exp Neurol. Oxford Academic 62(10):1076–1085. https://doi.org/10.1093/JNEN/62.10.1076

    Article  CAS  PubMed  Google Scholar 

  48. Broadbelt KG, Paterson DS, Belliveau RA, Trachtenberg FL, Haas EA, Stanley C, Krous HF, Kinney HC (2011) Decreased GABAA receptor binding in the medullary serotonergic system in the sudden infant death syndrome. J Neuropathol Exp Neurol. Oxford Academic 70(9):799–810. https://doi.org/10.1097/NEN.0b013e31822c09bc

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Fu J, Zhao L, Wang L, Zhu X (2015) Expression of markers of endoplasmic reticulum stress-induced apoptosis in the placenta of women with early and late onset severe pre-eclampsia. Taiwanese J Obstet Gynecol. Elsevier 54(1):19–23. https://doi.org/10.1016/J.TJOG.2014.11.002

    Article  PubMed  Google Scholar 

  50. Machaalani R, Say M, Waters KA (2011) Effects of cigarette smoke exposure on nicotinic acetylcholine receptor subunits α7 and β2 in the sudden infant death syndrome (SIDS) brainstem. Toxicol Appl Pharmacol. Academic Press 257(3):396–404. https://doi.org/10.1016/j.taap.2011.09.023

    Article  CAS  PubMed  Google Scholar 

  51. Machaalani R, Waters KA (2008) Neuronal cell death in the sudden infant death syndrome brainstem and associations with risk factors. Brain 131(1):218–228. https://doi.org/10.1093/brain/awm290

    Article  PubMed  Google Scholar 

  52. Waters KA, Meehan B, Huang JQ, Gravel RA, Michaud J, Côté A (1999) Neuronal apoptosis in sudden infant death syndrome. Pediatr Res. Lippincott Williams and Wilkins 45(2):166–172. https://doi.org/10.1203/00006450-199902000-00002

    Article  CAS  PubMed  Google Scholar 

  53. Nevárez N, De Lecea L (2018) Recent advances in understanding the roles of hypocretin/orexin in arousal, affect, and motivation. F1000Research. F1000 Research Ltd 7:1421. https://doi.org/10.12688/f1000research.15097.1

    Article  CAS  Google Scholar 

  54. Moreno JA, Radford H, Peretti D, Steinert JR, Verity N, Martin MG, Halliday M, Morgan J et al (2012) Sustained translational repression by eIF2α-P mediates prion neurodegeneration. Nature. Nat Publ Group 485(7399):507–511. https://doi.org/10.1038/nature11058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. O’Connor T et al (2008) Phosphorylation of the translation initiation factor eIF2α increases BACE1 levels and promotes amyloidogenesis. Neuron. Cell Press 60(6):988–1009. https://doi.org/10.1016/j.neuron.2008.10.047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Srinivasan R, Richards CI, Xiao C, Rhee D, Pantoja R, Dougherty DA, Miwa JM, Lester HA (2012) Pharmacological chaperoning of nicotinic acetylcholine receptors reduces the endoplasmic reticulum stress response. Mol Pharmacol. American Society for Pharmacology and Experimental Therapeutics 81(6):759–769. https://doi.org/10.1124/mol.112.077792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Srinivasan R et al (2016) Smoking-relevant nicotine concentration attenuates the unfolded protein response in dopaminergic neurons. https://doi.org/10.1523/JNEUROSCI.2126-15.2016

  58. Cai X-H, Li XC, Jin SW, Liang DS, Wen ZW, Cao HC, Mei HF, Wu Y et al (2014) Endoplasmic reticulum stress plays critical role in brain damage after chronic intermittent hypoxia in growing rats. Exp Neurol 257:148–156. https://doi.org/10.1016/j.expneurol.2014.04.029

    Article  CAS  PubMed  Google Scholar 

  59. Carloni S et al (2014) Increased autophagy reduces endoplasmic reticulum stress after neonatal hypoxia-ischemia: Role of protein synthesis and autophagic pathways. https://doi.org/10.1016/j.expneurol.2014.03.002

  60. Chen D, Dixon BJ, Doycheva DM, Li B, Zhang Y, Hu Q, He Y, Guo Z et al (2018) IRE1α inhibition decreased TXNIP/NLRP3 inflammasome activation through miR-17-5p after neonatal hypoxic-ischemic brain injury in rats. J Neuroinflammation 15:32. https://doi.org/10.1186/s12974-018-1077-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Doycheva D, Xu N, Kaur H, Malaguit J, McBride DW, Tang J, Zhang JH (2019) Adenoviral TMBIM6 vector attenuates ER-stress-induced apoptosis in a neonatal hypoxic-ischemic rat model. Dis Model Mech 12:dmm040352. https://doi.org/10.1242/dmm.040352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lin Z et al (2017) ‘Intranasal basic fibroblast growth factor attenuates endoplasmic reticulum stress and brain injury in neonatal hypoxic-ischaemic injury’. Am J Transl Res. E-Century Publishing Corporation 9(2) 275–288. Available at: www.ajtr.org/ISSN:1943-8141/AJTR0041180 (Accessed: 22 Oct 2020)

  63. Chan C-P, Siu KL, Chin KT, Yuen KY, Zheng B, Jin DY (2006) Modulation of the unfolded protein response by the severe acute respiratory syndrome coronavirus spike protein. J Virol 80(18):9279–9287. https://doi.org/10.1128/JVI.00659-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wang L, Cheng W, Zhang Z (2017) Respiratory syncytial virus infection accelerates lung fibrosis through the unfolded protein response in a bleomycin-induced pulmonary fibrosis animal model. Mol Med Rep Spandidos Publications 16(1):310–316. https://doi.org/10.3892/mmr.2017.6558

    Article  CAS  PubMed  Google Scholar 

  65. Waters KA and Tinworth KD (2001) Depression of ventilatory responses after daily, cyclic hypercapnic hypoxia in piglets. Available at: http://www.jap.org (Accessed: 7 May 2020)

  66. Rea P (2014) Clinical anatomy of the cranial nerves. Clin Anatomy Cranial Nerves. Elsevier Inc. https://doi.org/10.1016/C2013-0-19192-1

  67. Bouret S, Sara SJ (2005) Network reset: A simplified overarching theory of locus coeruleus noradrenaline function. Trends Neurosci Elsevier Ltd 28(11):574–582. https://doi.org/10.1016/j.tins.2005.09.002

    Article  CAS  PubMed  Google Scholar 

  68. Ambrose N, Waters KA, Rodriguez ML, Bailey K, Machaalani R (2018) Neuronal apoptosis in the brainstem medulla of sudden unexpected death in infancy (SUDI), and the importance of standardized SUDI classification. Forensic Sci Med Pathol. Humana Press Inc 14(1):42–56. https://doi.org/10.1007/s12024-018-9954-1

    Article  CAS  PubMed  Google Scholar 

  69. Abrams JK et al (2004) Anatomic and functional topography of the dorsal raphe nucleus. In: Annals of the New York Academy of Sciences, vol 1018. New York, Academy of Sciences, pp. 46–57. https://doi.org/10.1196/annals.1296.005

  70. Yoshida H, Matsui T, Hosokawa N, Kaufman RJ, Nagata K, Mori K (2003) A time-dependent phase shift in the mammalian unfolded protein response. Dev Cell. Cell Press 4(2):265–271. https://doi.org/10.1016/S1534-5807(03)00022-4

    Article  CAS  PubMed  Google Scholar 

  71. Zhao H et al (2011) Measuring the impact of cigarette smoke on the UPR. In: Methods in Enzymology. Academic Press Inc, pp. 147–164. https://doi.org/10.1016/B978-0-12-385116-1.00009-1

  72. Qie X et al (2017) Endoplasmic reticulum stress mediates methamphetamine-induced blood–brain barrier damage. Front Pharmacol. Frontiers media S.a. 8(SEP):639. https://doi.org/10.3389/fphar.2017.00639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Cano M, Wang L, Wan J, Barnett BP, Ebrahimi K, Qian J, Handa JT (2014) Oxidative stress induces mitochondrial dysfunction and a protective unfolded protein response in RPE cells. Free Radic Biol Med. NIH Public Access 69:1–14. https://doi.org/10.1016/j.freeradbiomed.2014.01.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Gdowski GT, McCrea RA (2000) Neck proprioceptive inputs to primate vestibular nucleus neurons. Exp Brain Res. Springer 135(4):511–526. https://doi.org/10.1007/s002210000542

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The tissue used in this study was obtained from the NSW Forensic and Analytical Science Service. We acknowledge Dr. Arunnjah Vivekanandarajah who undertook the tissue collecting on slides.

Funding

ST was supported by a scholarship partly funded by philanthropy from the parents of Grant Stone (who died of SIDS) in his honour.

Author information

Authors and Affiliations

Authors

Contributions

ST ran experiments, performed data analyses, and wrote the manuscript. RM conceived the project, directed, and overlooked it, including analysis and manuscript drafting. KW contributed to manuscript drafting and clinical insight.

Corresponding author

Correspondence to Rita Machaalani.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

Ethical approval was from the NSW Health RPAH Zone (X13-0038 and 599 HREC/13/RPAH/54) and University of Sydney Ethic committees.

Consent to Publish/Participate

The need to obtain participant consent was waived as per our ethics approval due to the post-mortem nature of this study. Moreover, all included cases were de-identified.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 286 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thomson, S., Waters, K.A. & Machaalani, R. The Unfolded Protein Response in the Human Infant Brain and Dysregulation Seen in Sudden Infant Death Syndrome (SIDS). Mol Neurobiol 58, 2242–2255 (2021). https://doi.org/10.1007/s12035-020-02244-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-020-02244-2

Keywords

Navigation