Skip to main content

Advertisement

Log in

Dual-Specificity Phosphatase 15 (DUSP15) Modulates Notch Signaling by Enhancing the Stability of Notch Protein

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Dual-specificity phosphatases (DUSPs) comprise a unique group of enzymes that dephosphorylate signaling proteins at both phospho-serine/threonine and phospho-tyrosine residues. Since Notch signaling is an essential pathway for neuronal cell fate determination and development that is also upregulated in Alzheimer’s disease tissues, we sought to explore whether and how DUSPs may impact Notch processing. Our results show that overexpression of DUSP15 concomitantly and dose-dependently increased the steady-state levels of recombinant Notch (extracellular domain-truncated Notch, NotchΔE) protein and its cleaved product, Notch intracellular domain (NICD). The overall ratio of NotchΔE to NICD was unchanged by overexpression of DUSP15, suggesting that the effect is independent of γ-secretase. Interestingly, overexpression of DUSP15 also dose-dependently increased phosphorylated ERK1/2. Phosphorylated ERK1/2 is known to be positively correlated with Notch protein level, and we found that DUSP15-mediated regulation of Notch was dependent on ERK1/2 activity. Together, our findings reveal the existence of a previously unidentified DUSP15-ERK1/2-Notch signaling axis, which could potentially play a role in neuronal differentiation and neurological disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Not applicable.

Abbreviations

AD:

Alzheimer’s disease

APP:

Amyloid precursor protein

Aβ:

Amyloid-β

BCA:

Bicinchoninic acid assay

C99:

γ-Secretase-derived 99-amino acid C-terminal fragment of APP

CFP:

Cyan fluorescent protein

CSL:

CBF-1/RBPJ-κ, Suppressor of Hairless, Lag-1 protein

DUSP:

Dual-specificity phosphatase

EGFP:

Enhanced green fluorescent protein

EYFP:

Enhanced yellow fluorescent protein

ECL:

Enhanced chemiluminescence

EGFR:

Epidermal growth factor receptor

ERK:

Extracellular signal-regulated kinase

FBS:

Fetal bovine serum

FGF:

Fibroblast growth factor

GAPDH:

Glyceraldehyde 3-phosphate dehydrogenase

HEK293:

Human embryonic kidney 293 cells

MAML:

Mastermind-like protein

MAPK/SAPK:

Mitogen-activated or stress-activated protein kinase

NotchΔE-GV:

NotchΔE-Gal4-VP16 stable cell line

NICD:

Notch intracellular domain

NotchΔE:

Extracellular domain-truncated Notch protein

PBS:

Phosphate-buffered saline

PDGFRB:

Platelet-derived growth factor receptor β

PP:

Protein phosphatase

PS1:

Presenilin 1

PTP:

Protein tyrosine phosphatase

PVDF:

Polyvinylidene difluoride

RIPA:

Radioimmunoprecipitation assay buffer

RNAi:

Ribonucleic acid interference

SNX:

Sorting nexin

STEP:

Striatal-enriched protein tyrosine phosphatase

TBST:

Tris-buffered saline, 0.1% Tween 20

TGF-β:

Transforming growth factor-β

Wnt:

Wingless-related integration site protein

References

  1. Patterson KI, Brummer T, O'Brien PM, Daly RJ (2009) Dual-specificity phosphatases: critical regulators with diverse cellular targets. Biochem J 418(3):475–489. https://doi.org/10.1042/bj20082234

    Article  CAS  PubMed  Google Scholar 

  2. Bhore N, Wang BJ, Chen YW, Liao YF (2017) Critical roles of dual-specificity phosphatases in neuronal proteostasis and neurological diseases. Int J Mol Sci 18(9). https://doi.org/10.3390/ijms18091963

  3. Perez-Sen R, Queipo MJ, Gil-Redondo JC, Ortega F, Gomez-Villafuertes R, Miras-Portugal MT, Delicado EG (2019) Dual-specificity phosphatase regulation in neurons and glial cells. Int J Mol Sci 20(8). https://doi.org/10.3390/ijms20081999

  4. Yoon TS, Jeong DG, Kim JH, Cho YH, Son JH, Lee JW, Ryu SE, Kim SJ (2005) Crystal structure of the catalytic domain of human VHY, a dual-specificity protein phosphatase. Proteins 61(3):694–697. https://doi.org/10.1002/prot.20642

    Article  CAS  PubMed  Google Scholar 

  5. Schmidt F, van den Eijnden M, Pescini Gobert R, Saborio GP, Carboni S, Alliod C, Pouly S, Staugaitis SM et al (2012) Identification of VHY/Dusp15 as a regulator of oligodendrocyte differentiation through a systematic genomics approach. PLoS One 7(7):e40457. https://doi.org/10.1371/journal.pone.0040457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rodriguez-Molina JF, Lopez-Anido C, Ma KH, Zhang C, Olson T, Muth KN, Weider M, Svaren J (2017) Dual specificity phosphatase 15 regulates Erk activation in Schwann cells. J Neurochem 140(3):368–382. https://doi.org/10.1111/jnc.13911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tian Y, Wang L, Jia M, Lu T, Ruan Y, Wu Z, Wang L, Liu J et al (2017) Association of oligodendrocytes differentiation regulator gene DUSP15 with autism. World J Biol Psychiatry 18(2):143–150. https://doi.org/10.1080/15622975.2016.1178395

    Article  PubMed  Google Scholar 

  8. Hori K, Sen A, Artavanis-Tsakonas S (2013) Notch signaling at a glance. J Cell Sci 126(Pt 10):2135–2140. https://doi.org/10.1242/jcs.127308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Imayoshi I, Kageyama R (2011) The role of Notch signaling in adult neurogenesis. Mol Neurobiol 44(1):7–12. https://doi.org/10.1007/s12035-011-8186-0

    Article  CAS  PubMed  Google Scholar 

  10. Engler A, Zhang R, Taylor V (2018) Notch and neurogenesis. Adv Exp Med Biol 1066:223–234. https://doi.org/10.1007/978-3-319-89512-3_11

    Article  CAS  PubMed  Google Scholar 

  11. Spires-Jones TL, Ritchie CW (2018) A brain boost to fight Alzheimer's disease. Science 361(6406):975–976. https://doi.org/10.1126/science.aau8060

    Article  CAS  PubMed  Google Scholar 

  12. Hollands C, Bartolotti N, Lazarov O (2016) Alzheimer’s disease and hippocampal adult neurogenesis; exploring shared mechanisms. Front Neurosci 10:178. https://doi.org/10.3389/fnins.2016.00178

    Article  PubMed  PubMed Central  Google Scholar 

  13. Berezovska O, Xia MQ, Hyman BT (1998) Notch is expressed in adult brain, is coexpressed with presenilin-1, and is altered in Alzheimer disease. J Neuropathol Exp Neurol 57(8):738–745. https://doi.org/10.1097/00005072-199808000-00003

    Article  CAS  PubMed  Google Scholar 

  14. Galeano P, Leal MC, Ferrari CC, Dalmasso MC, Martino Adami PV, Farias MI, Casabona JC, Puntel M et al (2018) Chronic hippocampal expression of Notch intracellular domain induces vascular thickening, reduces glucose availability, and exacerbates spatial memory deficits in a rat model of early Alzheimer. Mol Neurobiol 55(11):8637–8650. https://doi.org/10.1007/s12035-018-1002-3

    Article  CAS  PubMed  Google Scholar 

  15. Zhang YW, Thompson R, Zhang H, Xu H (2011) APP processing in Alzheimer’s disease. Mol Brain 4:3. https://doi.org/10.1186/1756-6606-4-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Golde TE, Koo EH, Felsenstein KM, Osborne BA, Miele L (2013) Gamma-secretase inhibitors and modulators. Biochim Biophys Acta 1828(12):2898–2907. https://doi.org/10.1016/j.bbamem.2013.06.005

    Article  CAS  PubMed  Google Scholar 

  17. Andersson ER, Lendahl U (2014) Therapeutic modulation of Notch signalling--are we there yet? Nat Rev Drug Discov 13(5):357–378. https://doi.org/10.1038/nrd4252

    Article  CAS  PubMed  Google Scholar 

  18. Okochi M, Fukumori A, Jiang J, Itoh N, Kimura R, Steiner H, Haass C, Tagami S et al (2006) Secretion of the Notch-1 Abeta-like peptide during Notch signaling. J Biol Chem 281(12):7890–7898. https://doi.org/10.1074/jbc.M513250200

    Article  CAS  PubMed  Google Scholar 

  19. Mathieu P, Adami PV, Morelli L (2013) Notch signaling in the pathologic adult brain. Biomolecular Concepts 4(5):465–476. https://doi.org/10.1515/bmc-2013-0006

    Article  CAS  PubMed  Google Scholar 

  20. Xu K, Bagli DJ, Egan SE (2014) NOTch just a bladder control problem. Cancer Cell 26(4):452–454. https://doi.org/10.1016/j.ccell.2014.09.018

    Article  CAS  PubMed  Google Scholar 

  21. Rampias T, Vgenopoulou P, Avgeris M, Polyzos A, Stravodimos K, Valavanis C, Scorilas A, Klinakis A (2014) A new tumor suppressor role for the Notch pathway in bladder cancer. Nat Med 20(10):1199–1205. https://doi.org/10.1038/nm.3678

    Article  CAS  PubMed  Google Scholar 

  22. Izrailit J, Berman HK, Datti A, Wrana JL, Reedijk M (2013) High throughput kinase inhibitor screens reveal TRB3 and MAPK-ERK/TGFbeta pathways as fundamental Notch regulators in breast cancer. Proc Natl Acad Sci U S A 110(5):1714–1719. https://doi.org/10.1073/pnas.1214014110

    Article  PubMed  PubMed Central  Google Scholar 

  23. Neradugomma NK, Subramaniam D, Tawfik OW, Goffin V, Kumar TR, Jensen RA, Anant S (2014) Prolactin signaling enhances colon cancer stemness by modulating Notch signaling in a Jak2-STAT3/ERK manner. Carcinogenesis 35(4):795–806. https://doi.org/10.1093/carcin/bgt379

    Article  CAS  PubMed  Google Scholar 

  24. Tremblay I, Pare E, Arsenault D, Douziech M, Boucher MJ (2013) The MEK/ERK pathway promotes NOTCH signalling in pancreatic cancer cells. PLoS One 8(12):e85502. https://doi.org/10.1371/journal.pone.0085502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang BJ, Her GM, Hu MK, Chen YW, Tung YT, Wu PY, Hsu WM, Lee H et al (2017) ErbB2 regulates autophagic flux to modulate the proteostasis of APP-CTFs in Alzheimer’s disease. Proc Natl Acad Sci U S A 114(15):E3129–E3138. https://doi.org/10.1073/pnas.1618804114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liao YF, Wang BJ, Cheng HT, Kuo LH, Wolfe MS (2004) Tumor necrosis factor-alpha, interleukin-1beta, and interferon-gamma stimulate gamma-secretase-mediated cleavage of amyloid precursor protein through a JNK-dependent MAPK pathway. J Biol Chem 279(47):49523–49532

    Article  CAS  Google Scholar 

  27. Bakshi P, Liao YF, Gao J, Ni J, Stein R, Yeh LA, Wolfe MS (2005) A high-throughput screen to identify inhibitors of amyloid beta-protein precursor processing. J Biomol Screen 10(1):1–12

    Article  CAS  Google Scholar 

  28. Kopan R, Schroeter EH, Weintraub H, Nye JS (1996) Signal transduction by activated mNotch: Importance of proteolytic processing and its regulation by the extracellular domain. Proc Natl Acad Sci U S A 93(4):1683–1688. https://doi.org/10.1073/pnas.93.4.1683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Schroeter EH, Kisslinger JA, Kopan R (1998) Notch-1 signalling requires ligand-induced proteolytic release of intracellular domain. Nature 393(6683):382–386

    Article  CAS  Google Scholar 

  30. Kovall RA, Blacklow SC (2010) Chapter two - mechanistic insights into Notch receptor signaling from structural and biochemical studies. In: Kopan R (ed) Current topics in developmental biology, vol 92. Academic Press, pp. 31–71. https://doi.org/10.1016/S0070-2153(10)92002-4

  31. Kopan R, Nye JS, Weintraub H (1994) The intracellular domain of mouse Notch: A constitutively activated repressor of myogenesis directed at the basic helix-loop-helix region of MyoD. Development 120(9):2385–2396

    CAS  PubMed  Google Scholar 

  32. Stifani S, Blaumueller CM, Redhead NJ, Hill RE, Artavanis-Tsakonas S (1992) Human homologs of a Drosophila enhancer of split gene product define a novel family of nuclear proteins. Nat Genet 2(2):119–127

    Article  CAS  Google Scholar 

  33. Zhang H, Wang L, Wong EYM, Tsang SL, Xu PX, Lendahl U, Sham MH (2017) An Eya1-Notch axis specifies bipotential epibranchial differentiation in mammalian craniofacial morphogenesis. Elife 6. https://doi.org/10.7554/eLife.30126

  34. Blain J, Bedard J, Thompson M, Boisvert FM, Boucher MJ (2017) C-terminal deletion of NOTCH1 intracellular domain (N1(ICD)) increases its stability but does not amplify and recapitulate N1(ICD)-dependent signalling. Sci Rep 7(1):5034. https://doi.org/10.1038/s41598-017-05119-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liao W, Zheng Y, Fang W, Liao S, Xiong Y, Li Y, Xiao S, Zhang X et al (2018) Dual specificity phosphatase 6 protects neural stem cells from beta-amyloid-induced cytotoxicity through ERK1/2 inactivation. Biomolecules 8(4). https://doi.org/10.3390/biom8040181

  36. Ahmad MK, Abdollah NA, Shafie NH, Yusof NM, Razak SRA (2018) Dual-specificity phosphatase 6 (DUSP6): a review of its molecular characteristics and clinical relevance in cancer. Cancer Biol Med 15(1):14–28. https://doi.org/10.20892/j.issn.2095-3941.2017.0107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Braithwaite SP, Stock JB, Lombroso PJ, Nairn AC (2012) Protein phosphatases and Alzheimer's disease. Prog Mol Biol Transl Sci 106:343–379. https://doi.org/10.1016/B978-0-12-396456-4.00012-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Vieira MN, Lyra ESNM, Ferreira ST, De Felice FG (2017) Protein tyrosine phosphatase 1B (PTP1B): a potential target for Alzheimer’s therapy? Front Aging Neurosci 9:7. https://doi.org/10.3389/fnagi.2017.00007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Andersson ER, Sandberg R, Lendahl U (2011) Notch signaling: simplicity in design, versatility in function. Development 138(17):3593–3612. https://doi.org/10.1242/dev.063610

    Article  CAS  PubMed  Google Scholar 

  40. Nakajima M, Shimizu T, Shirasawa T (2000) Notch-1 activation by familial Alzheimer’s disease (FAD)-linked mutant forms of presenilin-1. J Neurosci Res 62(2):311–317. https://doi.org/10.1002/1097-4547(20001015)62:2<311::AID-JNR16>3.0.CO;2-G

    Article  CAS  PubMed  Google Scholar 

  41. Brai E, Alina Raio N, Alberi L (2016) Notch1 hallmarks fibrillary depositions in sporadic Alzheimer's disease. Acta Neuropathol Commun 4(1):64. https://doi.org/10.1186/s40478-016-0327-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Nagarsheth MH, Viehman A, Lippa SM, Lippa CF (2006) Notch-1 immunoexpression is increased in Alzheimer's and Pick's disease. J Neurol Sci 244(1–2):111–116. https://doi.org/10.1016/j.jns.2006.01.007

    Article  CAS  PubMed  Google Scholar 

  43. Espinosa L, Ingles-Esteve J, Aguilera C, Bigas A (2003) Phosphorylation by glycogen synthase kinase-3 beta down-regulates Notch activity, a link for Notch and Wnt pathways. J Biol Chem 278(34):32227–32235. https://doi.org/10.1074/jbc.M304001200

    Article  CAS  PubMed  Google Scholar 

  44. Lee HJ, Kim MY, Park HS (2015) Phosphorylation-dependent regulation of Notch1 signaling: The fulcrum of Notch1 signaling. BMB Rep 48(8):431–437. https://doi.org/10.5483/bmbrep.2015.48.8.107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Antfolk D, Antila C, Kemppainen K, Landor SK, Sahlgren C (2019) Decoding the PTM-switchboard of Notch. Biochim Biophys Acta, Mol Cell Res 1866(12):118507. https://doi.org/10.1016/j.bbamcr.2019.07.002

    Article  CAS  Google Scholar 

  46. Kobayashi M, Nabinger SC, Bai Y, Yoshimoto M, Gao R, Chen S, Yao C, Dong Y et al (2017) Protein tyrosine phosphatase PRL2 mediates Notch and kit signals in early T cell progenitors. Stem Cells 35(4):1053–1064. https://doi.org/10.1002/stem.2559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Arruga F, Gizdic B, Bologna C, Cignetto S, Buonincontri R, Serra S, Vaisitti T, Gizzi K et al (2017) Mutations in NOTCH1 PEST domain orchestrate CCL19-driven homing of chronic lymphocytic leukemia cells by modulating the tumor suppressor gene DUSP22. Leukemia 31(9):1882–1893. https://doi.org/10.1038/leu.2016.383

    Article  CAS  PubMed  Google Scholar 

  48. Lachen-Montes M, Gonzalez-Morales A, de Morentin XM, Perez-Valderrama E, Ausin K, Zelaya MV, Serna A, Aso E et al (2016) An early dysregulation of FAK and MEK/ERK signaling pathways precedes the beta-amyloid deposition in the olfactory bulb of APP/PS1 mouse model of Alzheimer's disease. J Proteome 148:149–158. https://doi.org/10.1016/j.jprot.2016.07.032

    Article  CAS  Google Scholar 

  49. Kirouac L, Rajic AJ, Cribbs DH, Padmanabhan J (2017) Activation of Ras-ERK signaling and GSK-3 by amyloid precursor protein and amyloid Beta facilitates Neurodegeneration in Alzheimer's disease. eNeuro 4(2):ENEURO.0149–ENEU16.2017. https://doi.org/10.1523/ENEURO.0149-16.2017

    Article  Google Scholar 

  50. Sundaram MV (2005) The love-hate relationship between Ras and Notch. Genes Dev 19(16):1825–1839. https://doi.org/10.1101/gad.1330605

    Article  CAS  PubMed  Google Scholar 

  51. Yamashita AS, Geraldo MV, Fuziwara CS, Kulcsar MA, Friguglietti CU, da Costa RB, Baia GS, Kimura ET (2013) Notch pathway is activated by MAPK signaling and influences papillary thyroid cancer proliferation. Transl Oncol 6(2):197–205. https://doi.org/10.1593/tlo.12442

    Article  PubMed  PubMed Central  Google Scholar 

  52. Zayzafoon M, Abdulkadir SA, McDonald JM (2004) Notch signaling and ERK activation are important for the osteomimetic properties of prostate cancer bone metastatic cell lines. J Biol Chem 279(5):3662–3670. https://doi.org/10.1074/jbc.M308158200

    Article  CAS  PubMed  Google Scholar 

  53. Chen F, Yu G, Arawaka S, Nishimura M, Kawarai T, Yu H, Tandon A, Supala A et al (2001) Nicastrin binds to membrane-tethered Notch. Nat Cell Biol 3(8):751–754. https://doi.org/10.1038/35087069

    Article  CAS  PubMed  Google Scholar 

  54. Chen F, Hasegawa H, Schmitt-Ulms G, Kawarai T, Bohm C, Katayama T, Gu Y, Sanjo N et al (2006) TMP21 is a presenilin complex component that modulates gamma-secretase but not epsilon-secretase activity. Nature 440(7088):1208–1212. https://doi.org/10.1038/nature04667

    Article  CAS  PubMed  Google Scholar 

  55. Park H, Lee HS, Kim SJ (2015) Virtual screening with docking simulations and biochemical evaluation of VHY phosphatase inhibitors. Chem Pharm Bull 63(10):807–811. https://doi.org/10.1248/cpb.c15-00431

    Article  CAS  Google Scholar 

  56. Campa VM, Gutierrez-Lanza R, Cerignoli F, Diaz-Trelles R, Nelson B, Tsuji T, Barcova M, Jiang W et al (2008) Notch activates cell cycle reentry and progression in quiescent cardiomyocytes. J Cell Biol 183(1):129–141. https://doi.org/10.1083/jcb.200806104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Marathe S, Liu S, Brai E, Kaczarowski M, Alberi L (2015) Notch signaling in response to excitotoxicity induces neurodegeneration via erroneous cell cycle reentry. Cell Death Differ 22(11):1775–1784. https://doi.org/10.1038/cdd.2015.23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Aster JC, Pear WS, Blacklow SC (2017) The varied roles of Notch in cancer. Annu Rev Pathol 12:245–275. https://doi.org/10.1146/annurev-pathol-052016-100127

    Article  CAS  PubMed  Google Scholar 

  59. Bonda DJ, Lee HP, Kudo W, Zhu X, Smith MA, Lee HG (2010) Pathological implications of cell cycle re-entry in Alzheimer disease. Expert Rev Mol Med 12:e19. https://doi.org/10.1017/S146239941000150X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hou Y, Song H, Croteau DL, Akbari M, Bohr VA (2017) Genome instability in Alzheimer disease. Mech Ageing Dev 161(Pt A):83–94. https://doi.org/10.1016/j.mad.2016.04.005

    Article  CAS  PubMed  Google Scholar 

  61. Wolfe MS (2012) Gamma-secretase inhibitors and modulators for Alzheimer’s disease. J Neurochem 120 Suppl 1:89–98. https://doi.org/10.1111/j.1471-4159.2011.07501.x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Chi-Hon Lee for generous support and the Core Facility of the Institute of Cellular and Organismic Biology, Academia Sinica, for technical support. The authors also thank the National RNAi Core Facility at Academia Sinica in Taiwan for providing shRNA reagents and related services. We thank Dr. Marcus Calkins for critical reading of the manuscript.

Funding

This study was supported by Ministry of Science and Technology, Taiwan Grants MOST 107-2320-B-001-019, MOST 107-0210-01-19-01, MOST 108-3114-Y-001-002, MOST 108-2320-B-001-009, and MOST 109-2320-B-001-016 (to Y.-F.L.); the Academia Sinica AS-SUMMIT-108 (Y.-F.L.); the Program for Translational Innovation of Biopharmaceutical Development – Technology Supporting Platform Axis [Grant No. AS-KPQ-106-TSPA, to Y.-F.L. (NP7)].

Author information

Authors and Affiliations

Authors

Contributions

N.B. and Y.-F.L conceived the study. N.B. and Y.-F.L. designed the experiments. N.B. and B.-J.W. performed the research experiments. P.-F.W., Y.-L.L., and Y.-W.C. assisted in experimental techniques. W.-M.H., H.L., Y.-S.H., and D.-I.Y. contributed new reagents/analytic tools. N.B. and Y.-F.L. analyzed and interpreted data. N.B. and Y.-F.L. wrote the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yung-Feng Liao.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhore, N., Wang, BJ., Wu, PF. et al. Dual-Specificity Phosphatase 15 (DUSP15) Modulates Notch Signaling by Enhancing the Stability of Notch Protein. Mol Neurobiol 58, 2204–2214 (2021). https://doi.org/10.1007/s12035-020-02254-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-020-02254-0

Keywords

Navigation