Skip to main content
Log in

Density of Liquid Manganese Measured Using the Maximum Bubble Pressure Method

  • Brief Communication
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Manganese is an important metal for steelmaking. Data on the density of the metal are scarce and show considerable scatter. Present work reports the density of the liquid manganese in the range of 1535 K to 1836 K estimated for the first time with the use of the maximum bubble pressure technique. The obtained density of the manganese is marginally higher than previously reported in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. R. Jacob, S. Raman Sankaranarayanan, and S.P. Kumaresh Babu: Mater. Today: Proc., 2020, p. S2214785320303783.

  2. W. Zhang and C.Y. Cheng: Hydrometallurgy, 2007, vol. 89, pp. 137–59.

    Article  CAS  Google Scholar 

  3. T. Dubberstein, H.-P. Heller, J. Klostermann, R. Schwarze, and J. Brillo: J. Mater. Sci., 2015, vol. 50, pp. 7227–37.

    Article  CAS  Google Scholar 

  4. N. Shinozaki, M. Sonoda, and K. Mukai: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 1121–25.

    Article  CAS  Google Scholar 

  5. C. Benedicks, N. Ericsson, and G. Ericson: Arch Eisenhuettenwes., 1930, vol. 3, p. 473.

    CAS  Google Scholar 

  6. S.I. Popel, B.V. Tsarevskii, and Dzhemilev: Физикa Meтaллoв и Meтaллoвeдeниe, 1964, vol. 18, pp. 468–70.

  7. T. Saito, Y. Shiraishi, and Y. Sakuma: Trans. ISIJ, 1969, vol. 9, pp. 118–26.

    Article  CAS  Google Scholar 

  8. P.M. Nasch and S.G. Steinemann: Phys. Chem. Liq., 1995, vol. 29, pp. 43–58.

    Article  CAS  Google Scholar 

  9. J. Lee, L. Thu Hoai, and M. Shin: Metall. Mater. Trans. B, 2011, vol. 42B, pp. 546–49.

  10. M. Shin, L.T. Hoai, and J. Lee: 2010.

  11. L. Thu Hoai and J. Lee: Metall. Mater. Trans. B, 2011, vol. 42B, pp. 925–27.

  12. M. Simon: Ann. Chim. Phys., 1851, vol. 32, pp. 5–41.

    Google Scholar 

  13. K.J. Mysels: Coll. Surf., 1990, vol. 43, pp. 241–62.

    Article  CAS  Google Scholar 

  14. T. Dubberstein, M. Hötzel, R. Hagemann, P. Heller, and P.R. Scheller: Steel Res. Int., 2011, vol. 82, pp. 1122–28.

    Article  CAS  Google Scholar 

  15. T. Dubberstein and H.-P. Heller: Adv. Eng. Mater., 2013, vol. 15, pp. 583–89.

    Article  CAS  Google Scholar 

  16. T. Dubberstein and H.-P. Heller: High Temp.-High Press., 2015, vol. 44, pp. 393–406.

  17. I. Korobeinikov, D. Chebykin, S. Seetharaman, and O. Volkova: Int. J. Thermophys., 2020, vol. 41, p. 56.

    Article  CAS  Google Scholar 

Download references

The authors express their sincere gratitude for the financial support of the DFG project CRC 799 TRIP-Matrix-Composites.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iurii Korobeinikov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted April 28, 2020; accepted November 23, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korobeinikov, I., Endo, R., Seetharaman, S. et al. Density of Liquid Manganese Measured Using the Maximum Bubble Pressure Method. Metall Mater Trans B 52, 571–575 (2021). https://doi.org/10.1007/s11663-020-02044-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-020-02044-y

Navigation