Skip to main content

Advertisement

Log in

Surface Laser Treatment on Ferritic Ductile Iron: Effect of Linear Energy on Microstructure, Chemical Composition, and Hardness

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Surface transformation treatments like laser surface melting and laser surface hardening have been mostly developed in austempered ductile iron and gray cast iron. In this work, we explore the effects of the linear laser energy of the treatment on the microstructure, chemical composition, and hardness of ferritic nodular cast iron, using a fiber delivery diode laser. We found changes in the microstructure above 120 J/mm, characterized by the presence of graphite nodules surrounded by martensitic/dendritic shells. Above 316 J/mm, Fe3C and γ-Fe2O3 phases arise, together with a saturation of the microhardness around 1000 HV0.3 within the first 200 μm of depth, and of the surface hardness around 90 HR15N. Changes in microstructure and composition due to the laser treatment directly affect the thermal diffusion between the surface-modified zones and the nodular cast iron bulk. Our work highlights the importance of the linear energy in the design and planning of laser treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. G. CostaRodrigues, H. Vanhove, and J.R. Duflou: Phys. Procedia, 2014, vol. 56, pp. 901–8.

    Article  Google Scholar 

  2. 2 F. Cook, V. Jacobsen, D. Celentano, and J. Ramos-Grez: J. Laser Appl., 2015, vol. 27, p. 032006.

    Article  Google Scholar 

  3. 3 Guang-Xi Lu and Hong Zhang: Wear, 1990, vol. 138, pp. 1–12.

    Article  Google Scholar 

  4. S.K. Putatunda, L. Bartosiewicz, R.J. Hull, and M. Lander: Mater. Manuf. Process., 1997, 12, 137.

    Article  CAS  Google Scholar 

  5. 5 A. Roy and I. Manna: Mater. Sci. Eng. A, 2001, vol. 297, pp. 85–93.

    Article  Google Scholar 

  6. C. Soriano, J. Leunda, J. Lambarri, V. GarcíaNavas, and C. Sanz: Appl. Surf. Sci., 2011, vol. 257, pp. 7101–6.

    Article  CAS  Google Scholar 

  7. 7 A. Zammit, S. Abela, J.C. Betts, and M. Grech: Surf. Coatings Technol., 2017, vol. 331, pp. 143–52.

    Article  CAS  Google Scholar 

  8. 8 D.N.H. Trafford, T. Bell, J.H.P.C. Megaw, and A.S. Bransden: Met. Technol., 1983, vol. 10, pp. 69–77.

    Article  CAS  Google Scholar 

  9. 9 A. Liu and B. Previtali: Phys. Procedia, 2010, vol. 5, pp. 439–48.

    Article  CAS  Google Scholar 

  10. 10 M. Paczkowska: Opt. Laser Technol., 2016, vol. 76, pp. 143–8.

    Article  CAS  Google Scholar 

  11. 11 B. Wang, Y. Pan, Y. Liu, G.C. Barber, F. Qiu, and M. Hu: J. Mater. Res. Technol., 2020, vol. 9, pp. 2037–43.

    Article  CAS  Google Scholar 

  12. 12 B. Wang, Y. Pan, Y. Liu, N. Lyu, G.C. Barber, R. Wang, W. Cui, F. Qiu, and M. Hu: J. Mater. Res. Technol., 2020, vol. 9, pp. 8163–71.

    Article  CAS  Google Scholar 

  13. 13 P.A. Molian and A.K. Mathur: J. Eng. Mater. Technol. Trans. ASME, 1986, vol. 108, pp. 233–9.

    Article  CAS  Google Scholar 

  14. 14 C.P. Ju, C.H. Chen, and J.M. Rigsbee: Mater. Sci. Technol., 1988, vol. 4, pp. 161–6.

    Article  Google Scholar 

  15. 15 F.M. Ghaini, M.H. Ameri, and M.J. Torkamany: Optik (Stuttg)., 2020, vol. 203, p. 163758.

    Article  CAS  Google Scholar 

  16. J. Grum and R. Šturm: Mater. Charact., 1996, vol. 37, pp. 81–8.

    Article  CAS  Google Scholar 

  17. 17 J. Grum and R. Šturm: Appl. Surf. Sci., 2002, vol. 187, pp. 116–23.

    Article  CAS  Google Scholar 

  18. 18 J. Grum and R. Sturm: Int. J. Microstruct. Mater. Prop., 2005, vol. 1, pp. 11–23.

    CAS  Google Scholar 

  19. 19 K.Y. Benyounis, O.M.A. Fakron, J.H. Abboud, A.G. Olabi, and M.J.S. Hashmi: J. Mater. Process. Technol., 2005, vol. 170, pp. 127–32.

    Article  CAS  Google Scholar 

  20. 20 K.F. Alabeedi, J.H. Abboud, and K.Y. Benyounis: Wear, 2009, vol. 266, pp. 925–33.

    Article  CAS  Google Scholar 

  21. 21 N. Pagano, V. Angelini, L. Ceschini, and G. Campana: Procedia CIRP, 2016, vol. 41, pp. 987–91.

    Article  Google Scholar 

  22. 22 L. Ceschini, G. Campana, N. Pagano, and V. Angelini: Tribol. Int., 2016, vol. 104, pp. 342–51.

    Article  CAS  Google Scholar 

  23. 23 S. Popović: Maced. J. Chem. Chem. Eng., 2015, vol. 34, pp. 33–8.

    Article  Google Scholar 

Download references

Acknowledgments

E. Ramos-Moore thanks the financial support of ANID-Chile through the project grants FONDECYT 1180564 and 1181326. D. Celentano thanks the financial support of ANID-Chile through the project grants FONDECYT 1180591 and REDES 150041. We also appreciate the funding of the GDOES equipment through the project FONDEQUIP EQM 160091. A. Boccardo is a member of the research staff of CONICET and he acknowledges the financial support received of the ASUTNCO0007785 grant from Universidad Tecnológica Nacional.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Celentano.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted July 22, 2020; accepted December 3, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Catalán, N., Ramos-Moore, E., Boccardo, A. et al. Surface Laser Treatment on Ferritic Ductile Iron: Effect of Linear Energy on Microstructure, Chemical Composition, and Hardness. Metall Mater Trans B 52, 755–763 (2021). https://doi.org/10.1007/s11663-020-02050-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-020-02050-0

Navigation