Skip to main content
Log in

Semi-solid Constitutive Parameters and Failure Behavior of a Cast AA7050 Alloy

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

AA7050 is an aluminum alloy with superior mechanical properties; however, it is prone to hot tearing (HT) during its production via direct-chill casting. This study focuses on extracting constitutive parameters of the alloy thermomechanical behavior in semi-solid state as well as gaining insight in its failure behavior. Tensile tests were performed using an Instron 5944 at solid fractions between 0.85 (550 °C) and 1.0 (465 °C), at deformation rates of 0.2 and 2 mm/min. The results showed that there are three mechanical behavior regimes in this solid fraction range: ductile at 1.0 (T = 465 °C) ≤ fs < 0.97 (T = 473 °C), brittle at 0.97 (T = 473 °C) ≤ fs ≤ 0.9 (T = 485 °C) and then ductile again (at 0.9 (T = 485 °C) < fs ≤ 0.85 (T = 550 °C)). Fracture surface analysis revealed that the fracture mode was mostly intergranular with fracture propagating through solid bridges as well. Semi-solid constitutive parameters were obtained by making a simple thermal model and numerical tensile tests in ALSIM software package and comparing the simulation results with experimental mechanical tests. The extracted constitutive parameters and available information from the literature support the fact that AA7050 is more susceptible to HT than AA5182 and Al-2 wt pct Cu alloys. The obtained parameters can further enhance the predictive capability of computer simulations of direct-chill casting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. M. Dixit, R.S. Mishra, and K.K. Sankaran: Mater. Sci. Eng. A, 2008, vol. 478, pp. 163–72.

    Article  CAS  Google Scholar 

  2. 2 E.A. Starke and J.T. Staley: Prog. Aerosp. Sci., 1996, vol. 32, pp. 131–72.

    Article  Google Scholar 

  3. D.A. Granger: Treatise Mater. Sci. Technol., vol. 31, 1989, pp. 109–35.

    Article  CAS  Google Scholar 

  4. 4 N.L. Loh and K.Y. Sia: J. Mater. Process. Technol., 1992, vol. 30, pp. 45–65.

    Article  Google Scholar 

  5. 5 D.G. Eskin and L. Katgerman: Metall. Mater. Trans. A, 2007, vol. 38, pp. 1511–9.

    Article  CAS  Google Scholar 

  6. D.G. Eskin, A. Suyitno, and L. Katgerman: Prog. Mater. Sci., 2004, vol. 49, pp. 629–711.

    Article  CAS  Google Scholar 

  7. 7 F. Sheykh-jaberi, S.L. Cockcroft, D.M. Maijer, and A.B. Phillion: J. Mater. Process. Technol., 2019, vol. 266, pp. 37–45.

    Article  CAS  Google Scholar 

  8. 8 C. Puncreobutr, P.D. Lee, K.M. Kareh, T. Connolley, J.L. Fife, and A.B. Phillion: Acta Mater., 2014, vol. 68, pp. 42–51.

    Article  CAS  Google Scholar 

  9. Suyitno, V.I. Savran, L. Katgerman, and D.G. Eskin: Metall. Mater. Trans. A, 2004, vol. 35, pp. 3551–61.

    Article  CAS  Google Scholar 

  10. 10 D.G. Eskin and L. Katgerman: Mater. Sci. Forum, 2006, vol. 519–521, pp. 1681–6.

    Article  Google Scholar 

  11. 11 A. Stangeland, A. Mo, M. M’Hamdi, D. Viano, and C. Davidson: Metall. Mater. Trans. A, 2006, vol. 37, pp. 705–14.

    Article  CAS  Google Scholar 

  12. 12 A. Stangeland, A. Mo, Ø. Nielsen, M. M’Hamdi, and D. Eskin: Metall. Mater. Trans. A, 2004, vol. 35, pp. 2903–15.

    Article  CAS  Google Scholar 

  13. 13 L. Katgerman: JOM, 1982, vol. 34, pp. 46–9.

    Article  Google Scholar 

  14. M. Lalpoor: Ph.D. Thesis, Delft University of Technology (TU Delft), The Netherlands, 2010.

  15. 15 M. Lalpoor, D.G. Eskin, and L. Katgerman: Int. J. Mater. Res., 2011, vol. 102, pp. 1286–93.

    Article  CAS  Google Scholar 

  16. A. Suyitno, D.G. Eskin, and L. Katgerman: Key Eng. Mater., 2006, vol. 306–308, pp. 977–82.

    Article  Google Scholar 

  17. 17 A. Stangeland, A. Mo, and D. Eskin: Metall. Mater. Trans. A, 2006, vol. 37, pp. 2219–29.

    Article  CAS  Google Scholar 

  18. T.A.S. Subroto: Ph.D. Thesis, Delft University of Technology (TU Delft), The Netherlands, 2014.

  19. 19 D.G. Eskin, V.I. Savran, and L. Katgerman: Metall. Mater. Trans. A, 2005, vol. 36, pp. 1965–76.

    Article  CAS  Google Scholar 

  20. T. Subroto, A. Miroux, D. Mortensen, M. M’Hamdi, D.G. Eskin, and L. Katgerman: IOP Conf. Ser. Mater. Sci. Eng., 2012, vol. 33, p. 012068.

    Article  CAS  Google Scholar 

  21. 21 M. M’Hamdi, A. Mo, and H.G. Fjær: Metall. Mater. Trans. A, 2006, vol. 37, pp. 3069–83.

    Article  Google Scholar 

  22. M. Lalpoor, D.G. Eskin, D. Ruvalcaba, H.G. Fjær, A. TenCate, N. Ontijt, and L. Katgerman: Mater. Sci. Eng. A, 2011, vol. 528, pp. 2831–42.

    Article  CAS  Google Scholar 

  23. 23 M. Lalpoor, D.G. Eskin, and L. Katgerman: Metall. Mater. Trans. A, 2009, vol. 40, pp. 3304–13.

    Article  CAS  Google Scholar 

  24. T. Subroto, A. Miroux, D.G. Eskin, and L. Katgerman: Mater. Sci. Eng. A, 2017, vol. 679, pp. 28–35.

    Article  CAS  Google Scholar 

  25. 25 D.G. Eskin: Physical Metallurgy of Direct Chill Casting of Aluminum Alloys, CRC Press/Taylor & Francis, Boca Raton, FL, USA, 2008.

    Book  Google Scholar 

  26. 26 E. Giraud, M. Suery, and M. Coret: Metall. Mater. Trans. A, 2010, vol. 41, pp. 2257–68.

    Article  CAS  Google Scholar 

  27. 27 W.M. van Haaften, B. Magnin, W.H. Kool, and L. Katgerman: Metall. Mater. Trans. A, 2002, vol. 33, pp. 1971–80.

    Article  Google Scholar 

  28. 28 O. Ludwig, J.-M. Drezet, C.L. Martin, and M. Suéry: Metall. Mater. Trans. A, 2005, vol. 36, pp. 1525–35.

    Article  CAS  Google Scholar 

  29. O. Ludwig, J.-M. Drezet, P. Ménésès, C.L. Martin, and M. Suéry: Mater. Sci. Eng. A, 2005, vol. 413–414, pp. 174–9.

    Article  CAS  Google Scholar 

  30. 30 D. Fabrègue, A. Deschamps, M. Suéry, and W.J. Poole: Metall. Mater. Trans. A, 2006, vol. 37, pp. 1459–67.

    Article  Google Scholar 

  31. O. Ludwig, B. Commet, J.-M. Drezet, C.L. Martin, and M. Suery: in Proc. MCWASP X, 10th Int. Conf. on Modeling of Casting, Welding and Advanced Solidification Processes, TMS, Warrendale, PA, 2003, pp. 183–90.

  32. 32 O. Ludwig, C.L. Martin, and M. Suéry: Mater. Forum, 2004, vol. 28, pp. 357–62.

    CAS  Google Scholar 

  33. C.L. Martin, M. Braccini, and M. Suéry: Mater. Sci. Eng. A, 2002, vol. 325, pp. 292–301.

    Article  Google Scholar 

  34. C. Martin, O. Ludwig, and M. Suéry: in Proc. WCCM V, World Congr. on Computational Mechanics V, Vienna University of Technology, Vienna, 2002.

  35. 35 H.G. Fjær and A. Mo: Metall. Trans. B, 1990, vol. 21, pp. 1049–61.

    Article  Google Scholar 

  36. T. Subroto, A. Miroux, D.G. Eskin, K. Ellingsen, A. Marson, M. M’Hamdi, and L. Katgerman: in Proc. ICF13, 13th International Conf. on Fracture, Beijing, China, 2013, pp. 2528–36.

  37. T.A.S. Subroto, A.G. Miroux, D.G. Eskin, and L. Katgerman: IOP Conf. Ser. Mater. Sci. Eng., 2011, vol. 27, p. 012074.

    Article  CAS  Google Scholar 

  38. A. Alankar and M.A. Wells: Mater. Sci. Eng. A, 2010, vol. 527, pp. 7812–20.

    Article  CAS  Google Scholar 

  39. A.B. Phillion, S. Thompson, S.L. Cockcroft, and M.A. Wells: Mater. Sci. Eng. A, 2008, vol. 497, pp. 388–94.

    Article  CAS  Google Scholar 

  40. 40 G. Chen, F. Lin, S. Yao, F. Han, B. Wei, and Y. Zhang: J. Alloys Compd., 2016, vol. 674, pp. 26–36.

    Article  CAS  Google Scholar 

  41. 41 L. Sweet, M.A. Easton, J.A. Taylor, J.F. Grandfield, C.J. Davidson, L. Lu, M.J. Couper, and D.H. Stjohn: Metall. Mater. Trans. A, 2013, vol. 44, pp. 5396–407.

    Article  CAS  Google Scholar 

  42. 42 V. Mathier, P.-D. Grasso, and M. Rappaz: Metall. Mater. Trans. A, 2008, vol. 39, pp. 1399–409.

    Article  CAS  Google Scholar 

  43. 43 I. Farup, J.-M. Drezet, and M. Rappaz: Acta Mater., 2001, vol. 49, pp. 1261–9.

    Article  CAS  Google Scholar 

  44. M. Rappaz, J.-M. Drezet, P.-D. Grasso, and A. Jacot: in Proc. MCWASP X, 10th Int. Conf. on Modeling of Casting, Welding and Advanced Solidification Processes, TMS, Warrendale, PA, 2003, pp. 53–60.

  45. 45 Y. Takayama, T. Tozawa, and H. Kato: Acta Mater., 1999, vol. 47, pp. 1263–70.

    Article  CAS  Google Scholar 

  46. 46 D.C. Weckman and P. Niessen: Metall. Trans. B, 1982, vol. 13, pp. 593–602.

    Article  Google Scholar 

  47. 47 M. Rappaz, J.-M. Drezet, and M. Gremaud: Metall. Mater. Trans. A, 1999, vol. 30, pp. 449–55.

    Article  CAS  Google Scholar 

  48. 48 S. Mihanyar, A. Mo, M. M’Hamdi, and K. Ellingsen: Metall. Mater. Trans. A, 2011, vol. 42, pp. 1887–95.

    Article  CAS  Google Scholar 

  49. 49 J.A. Spittle and A.A. Cushway: Met. Technol., 1983, vol. 10, pp. 6–13.

    Article  CAS  Google Scholar 

  50. 50 J. Campbell and T.W. Clyne: Cast Met., 1990, vol. 3, pp. 224–6.

    Article  Google Scholar 

  51. D.G. Eskin, L. Katgerman, A. Suyitno, and J.F. Mooney: Metall. Mater. Trans. A, 2004, vol. 35, pp. 1325–35.

    Article  CAS  Google Scholar 

  52. 52 D. Eskine, J. Zuidema, and L. Katgerman: Int. J. Cast Met. Res., 2002, vol. 14, pp. 217–23.

    Article  CAS  Google Scholar 

  53. L. Zhang, D.G. Eskin, M. Lalpoor, and L. Katgerman: Mater. Sci. Eng. A, 2010, vol. 527, pp. 3264–70.

    Article  CAS  Google Scholar 

  54. 54 B. Magnin, L. Maenner, L. Katgerman, and S. Engler: Mater. Sci. Forum, 1996, vol. 217–222, pp. 1209–14.

    Article  Google Scholar 

Download references

Acknowledgments

This research was carried out within the Materials innovation institute (www.m2i.nl) research framework, project number M42.5.09340. The establishment of the experimental set-up and testing procedure for the mechanical tensile testing in the semi-solid has been supported by the Norsk Hydro Fond for SINTEF. The authors express their gratitude to Dr. Démian Ruvalcaba and Mr. Jacob van Oord (Tata Steel Research, Development & Technology, The Netherlands) and also to Mr. Andrew Marson, Mr. Hans I. Lange and Mr. Arne Nordmark (SINTEF Materials and Chemistry, Norway) for their support and inputs. Support from the Modelling assisted INnovation for Aluminum DC Casting process (MINAC) community is highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tungky Subroto.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted June 16, 2020; accepted November 23, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Subroto, T., Eskin, D.G., Miroux, A. et al. Semi-solid Constitutive Parameters and Failure Behavior of a Cast AA7050 Alloy. Metall Mater Trans A 52, 871–888 (2021). https://doi.org/10.1007/s11661-020-06112-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-06112-5

Navigation