Skip to main content
Log in

Origins of Non-random Particle Distributions and Implications to Abnormal Grain Growth in an Al-3.5 Wt Pct Cu Alloy

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The mechanisms of abnormal grain growth (AGG) in particle-containing systems have long been a mystery. Recently, we reported that a non-random particle distribution can induce a grain size advantage and trigger AGG. However, the processing conditions leading to a non-random particle distribution are far from being understood. Here, we investigate the particle distribution and concomitant grain growth behavior at different annealing temperatures and times in an Al-3.5 wt pct Cu alloy by scanning electron microscopy (SEM). At high temperatures and long times, the particle distribution evolves from random to non-random, with an accompanying transition from normal grain growth (NGG) to AGG. Analytical calculations suggest that a non-random particle distribution is introduced by residual Cu segregation even after homogenization. In short, the corresponding fluctuation of θ-Al2Cu phase distribution is amplified at elevated temperatures via particle dissolution. We quantify the spatial inhomogeneity of particles through the Gini coefficient and link this important parameter to the critical grain size necessary for AGG. The trends are conveyed succinctly in a temperature–time–(structural) transformation (TTT) diagram, which identifies the onset of AGG in an Al-3.5 wt pct Cu alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. E.O. Hall, Proc. Phys. Soc. B 64, 747–753 (1951)

    Article  Google Scholar 

  2. N.J. Petch, J. Iron Steel Inst. 173, 25–28 (1953)

    Google Scholar 

  3. G.S. Rohrer, Metall. Mater. Trans. A 41A, 1063–1100 (2010)

    Article  CAS  Google Scholar 

  4. P.A. Manohar, M. Ferry, T. Chandra, ISIJ Int. 38, 913–924 (1998)

    Article  CAS  Google Scholar 

  5. J.E. Burke, AIME Trans. 180, 73–91 (1949)

    Google Scholar 

  6. J.E. Burke, D. Turnbull, Prog. Met. Phys. 3, 220–292 (1952)

    Article  CAS  Google Scholar 

  7. J. Humphreys, G.S. Rohrer, A. Rollett, in Recrystallization and Related Annealing Phenomena, 3rd edn., ed. by J. Humphreys, G.S. Rohrer, A. Rollett (Elsevier, Oxford, 2017), pp. 375–429

    Chapter  Google Scholar 

  8. I.M. Lifshitz, V.V. Slyozov, J. Phys. Chem. Solids 19, 35–50 (1961)

    Article  Google Scholar 

  9. C. Wagner, Z. Elektrochem. Ber. Bunsenges. Phys. Chem. 65, 581–591 (1961)

    CAS  Google Scholar 

  10. M. Hillert, Acta Metall. 13, 227–238 (1965)

    Article  CAS  Google Scholar 

  11. D. Duly, G.J. Baxter, H.R. Shercliff, J.A. Whiteman, C.M. Sellars, M.F. Ashby, Acta Mater. 44, 2947–2962 (1996)

    Article  CAS  Google Scholar 

  12. J.E. May, D. Turnbull, Trans. Metall. Soc. AIME 212, 769 (1958)

    CAS  Google Scholar 

  13. J. Calvet and C. Renon: Mém. Sci. Rev. Métall., 1960, vol. 57.

  14. A. Gangulee, F.M. D’Heurle, Thin Solid Films 12, 399–402 (1972)

    Article  CAS  Google Scholar 

  15. T. Gladman, Mater. Sci. Forum 94–96, 113–128 (1992)

    Article  Google Scholar 

  16. I.-J. Bae, S. Baik, J. Am. Ceram. Soc. 80, 1149–1156 (1997)

    Article  CAS  Google Scholar 

  17. J. Dennis, P.S. Bate, J.F. Humphreys, Mater. Sci. Forum 558–559, 717–722 (2007)

    Article  Google Scholar 

  18. J. Dennis, P.S. Bate, F.J. Humphreys, Acta Mater. 57, 4539–4547 (2009)

    Article  CAS  Google Scholar 

  19. E.A. Holm, T.D. Hoffmann, A.D. Rollett, C.G. Roberts, IOP Conf. Ser. Mater. Sci. Eng. 89, 012005 (2015)

    Article  Google Scholar 

  20. T. Omori, T. Kusama, S. Kawata, I. Ohnuma, Y. Sutou, Y. Araki, K. Ishida, R. Kainuma, Science 341, 1500 (2013)

    Article  CAS  Google Scholar 

  21. S. Jin, M. Huang, Y. Kwon, L. Zhang, B.-W. Li, S. Oh, J. Dong, D. Luo, M. Biswal, B.V. Cunning, P.V. Bakharev, I. Moon, W.J. Yoo, D.C. Camacho-Mojica, Y.-J. Kim, S.H. Lee, B. Wang, W.K. Seong, M. Saxena, F. Ding, H.-J. Shin, R.S. Ruoff, Science 362, 1021–1025 (2018)

    Article  CAS  Google Scholar 

  22. I. Andersen, Ø. Grong, N. Ryum, Acta Metall. Mater. 43, 2689–2700 (1995)

    Article  CAS  Google Scholar 

  23. M.A. Razzak, M. Perez, T. Sourmail, S. Cazottes, M. Frotey, ISIJ Int. 52, 2278–2282 (2012)

    Article  CAS  Google Scholar 

  24. G.C. Abbruzzese, C. Forzanti, Mater. Sci. Forum 706–709, 1355–1360 (2012)

    Article  Google Scholar 

  25. G.C. Abbruzzese, J. Phys. Conf. Ser. 1270, 012036 (2019)

    Article  CAS  Google Scholar 

  26. P.R. Rios, Acta Mater. 45, 1785–1789 (1997)

    Article  CAS  Google Scholar 

  27. N. Lu, J. Kang, N. Senabulya, R. Keinan, N. Gueninchault, A.J. Shahani, Acta Mater. 195, 1–12 (2020)

    Article  CAS  Google Scholar 

  28. C. Gini, Riv. polit. econ. 87, 769–790 (1997)

    Google Scholar 

  29. C. Gini: Variabilità e mutabilità (1912).

  30. W.J. Carrington, K.R. Troske, J. Bus. Econ. Stat. 15, 402–409 (1997)

    Google Scholar 

  31. S.J. Rey, R.J. Smith, Lett. Spat. Resour. Sci. 6, 55–70 (2013)

    Article  Google Scholar 

  32. Z.I. Botev, J.F. Grotowski, D.P. Kroese, Ann. Stat. 38, 2916–2957 (2010)

    Article  Google Scholar 

  33. R.W. Balluffi, Kinetics of Materials (Wiley, Hoboken, NJ, 2005).

    Book  Google Scholar 

  34. S. Fujikawa, K. Hirano, J. Jpn Inst. Light Met. 20, 267–277 (1970)

    Article  CAS  Google Scholar 

  35. E. Nes, N. Ryum, O. Hunderi, Acta Metall. 33, 11–22 (1985)

    Article  CAS  Google Scholar 

  36. A.W. Bowen, M.G. Ardakani, J.F. Humphreys, Mater. Sci. Forum 157–162, 919–926 (1994)

    Article  Google Scholar 

  37. J. Humphreys, G.S. Rohrer, A. Rollett, in Recrystallization and Related Annealing Phenomena, 3rd edn., ed. by J. Humphreys, G.S. Rohrer, A. Rollett (Elsevier, Oxford, 2017), pp. 109–143

    Chapter  Google Scholar 

  38. S.-J.L. Kang, in Sintering. ed. by S.-J.L. Kang (Butterworth-Heinemann, Oxford, 2005), pp. 117–135

    Chapter  Google Scholar 

  39. J.O. Andersson, T. Helander, L. Höglund, P. Shi, B. Sundman, CALPHAD 26, 273–312 (2002)

    Article  CAS  Google Scholar 

  40. W.F. Smith, J. Hashemi, F. Presuel-Moreno, Foundations of Materials Science and Engineering (McGraw-Hill Publishing, New York, 2006).

    Google Scholar 

  41. V. Bezák, Metall. Trans. 3, 1235–1237 (1972)

    Article  Google Scholar 

  42. H. Fredriksson, U. Åkerlind, Materials Processing During Casting (Wiley, Hoboken, NJ, 2006), pp. 227–253

    Book  Google Scholar 

  43. S. Nag, Y. Zheng, R.E.A. Williams, A. Devaraj, A. Boyne, Y. Wang, P.C. Collins, G.B. Viswanathan, J.S. Tiley, B.C. Muddle, R. Banerjee, H.L. Fraser, Acta Mater. 60, 6247–6256 (2012)

    Article  CAS  Google Scholar 

  44. E.M. Lifshitz, L.P. Pitaevskii, Statistical Physics: Theory of the Condensed State (Elsevier, Amsterdam, 2013).

    Google Scholar 

  45. X. Wang, Z. Huang, B. Cai, N. Zhou, O. Magdysyuk, Y. Gao, S. Srivatsa, L. Tan, L. Jiang, Acta Mater. 168, 287–298 (2019)

    Article  CAS  Google Scholar 

  46. S. Birosca, A. Nadoum, D. Hawezy, F. Robinson, W. Kockelmann, Acta Mater. 185, 370–381 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge financial support from the Army Research Office Young Investigator Program under Award No. W911NF-18-1-0162. We also acknowledge the University of Michigan College of Engineering for financial support and the Michigan Center for Materials Characterization for use of the instruments and staff assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashwin J. Shahani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted September 1, 2020; accepted December 14, 2020.

Supplementary Information

Below is the link to the electronic supplementary material.

(PDF 970 kb)

Appendix

Appendix

Based on the Smith–Zener pinning mechanism, grain size is inversely proportional to particle phase fraction (neglecting the particle size), as \({R}_{\mathrm{n}}^{\mathrm{m}}\left(S\right)=\frac{k}{{f}_{\theta }\left(S\right)}\) , where k is a coefficient. We assume a one-dimensional space parametrized by a coordinate \(S\). The grain size departure \(\Delta {R}_{\mathrm{n}}\) could be approximately estimated as \(\Delta {R}_{\mathrm{n}}={R}_{\mathrm{n}}^{\mathrm{m}}(S){^{\prime}}*\Delta S\), where \({R}_{\mathrm{n}}^{\mathrm{m}}(S){^{\prime}}\) is the spatial derivative of a continuous function \({R}_{\mathrm{n}}^{\mathrm{m}}(S)\). Using this information, we can express the magnitude of the inhomogeneity parameter \(\delta =\Delta {R}_{\mathrm{n}}/{R}_{\mathrm{n}}\) as

$$\left|\delta \right|=\left|\mathrm{ln}({f}_{\theta }\left(S\right)){^{\prime}}\right|*\Delta S.$$
(A1)

The distance \(\Delta S\) could be thought of as \({R}_{\mathrm{ab}}-{R}_{\mathrm{n}}\). Assuming that \({R}_{\mathrm{ab}}\) needs to have double the normal grain size \({R}_{\mathrm{n}}\) to trigger AGG, \(\Delta S\) could be simplified as \({\Delta S=R}_{\mathrm{ab}}-{R}_{\mathrm{n}}={2R}_{\mathrm{n}}-{R}_{\mathrm{n}}={R}_{\mathrm{n}}\). Based on Eq. [3] in the main text, the maximal \(\left|\mathrm{ln}({f}_{\theta }\left(S\right)){^{\prime}}\right|\) are obtained at \(S=\lambda /4\). Putting it all together,

$${\left|\delta \right|}_{\mathrm{max}}=\frac{b\pi }{a}*\frac{{R}_{\mathrm{n}}}{\lambda /2}.$$
(A2)

In Eq. [A2], parameters a and b describe the spatial distribution of θ-Al2Cu phase. To connect our experimental work to theory, we relate \({\left|\delta \right|}_{\mathrm{max}}\) to the Gini coefficient \(G\) in what follows.

Setting \(h=2S/\lambda \), we normalize the phase distribution \({f}_{\theta }\left(S\right)\) as \({f}_{\theta }(\frac{\lambda }{2}*h)\),

$${f}_{\theta }\left(\frac{\lambda }{2}*h\right)=1+\frac{b}{a}\mathrm{sin}\left(\pi t-\frac{\pi }{2}\right).$$
(A3)

The half period of \(\left[0,\lambda /2\right]\) thus becomes \(\left[0,h\right]\). Then, we can calculate the Lorenz curve (L) by integrating the normalized function \({f}_{\theta }(\frac{\lambda }{2}*h)\) in the half period of \(\left[0,h\right]\):

$$L={\int }_{0}^{h}\left(1+\frac{b}{a}\mathrm{sin}\left(\pi h-\frac{\pi }{2}\right)\right)\mathrm{d}h=h+\frac{b}{a\pi }\mathrm{cos}\left(\pi h-\frac{\pi }{2}\right).$$
(A4)

Next, we determine the area under Lorenz curve [see blue region in Figure 1(c)] as

$$B={\int }_{0}^{1}\left(h+\frac{b}{a\pi }\mathrm{cos}\left(\pi h-\frac{\pi }{2}\right)\right)\mathrm{d}h=\frac{1}{2}-\frac{2b}{a{\pi }^{2}}.$$
(A5)

Finally, the Gini coefficient is computed as

$$G=1-2B=\frac{4}{{\pi }^{2}}*\frac{b}{a}.$$
(A6)

Combining Eqs. [A2] and [A6], we link the inhomogeneity parameter to the Gini coefficient:

$${\left|\delta \right|}_{\mathrm{max}}=\frac{{\pi }^{2}}{4}*G*\frac{{R}_{\mathrm{n}}}{\lambda /2}.$$
(A7)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, N., Kang, J. & Shahani, A.J. Origins of Non-random Particle Distributions and Implications to Abnormal Grain Growth in an Al-3.5 Wt Pct Cu Alloy. Metall Mater Trans A 52, 914–927 (2021). https://doi.org/10.1007/s11661-020-06125-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-06125-0

Navigation