Skip to main content
Log in

Molecular hybridization based design and synthesis of new benzo[5,6]chromeno[2,3-b]-quinolin-13(14H)-one analogs as cholinesterase inhibitors

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

A Series of new tacrine analogs were designed, synthesized, characterized by respective spectral data and evaluated for cholinesterase inhibitory activity to be useful in Alzheimer’s disease. Most of the synthesized compounds showed good in vitro inhibitory activities toward acetyl cholinesterase (AChE) and butyrylcholinesterase (BuChE) enzymes. Among the compounds, 6i, 6o and 6r with increased saturated carboxylic ring size attached to the pyridine moiety and having 3,4-dihydroxy, 3,4,5-trimethoxy substituents on the aromatic ring attached at the stereogenic center have shown equal potency to that of tacrine with IC50values 0.65 ± 0.06, 1.32 ± 0.02 and 0.85 ± 0.05, 1.65 ± 0.12 and 0.92 ± 0.03, 1.91 ± 0.12 μM against AChE and BuChE, respectively. Standard drug tacrine exhibited IC50 values of 0.47 ± 0.02 and 0.65 ± 0.08, while Donepezil showed IC50 0.71 ± 0.06 and 0.31 ± 0.04 μM against AChE and BuChE, respectively. Docking studies of all the molecules disclosed close hydrogen bond interactions with the binding site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Goedert M, Spillantini MG. A century of Alzheimer’s disease. Science. 2006;314:777–81. https://doi.org/10.1126/science.1132814

    Article  CAS  PubMed  Google Scholar 

  2. Wimo A, Prince M, Guerchet M, Ali GC, Wu YT, Prina M. World Alzheimer Report 2015. 2015. http://www.alz.co.uk/worldreport

  3. Andreeva T, Lukiw WJ, Rogaev EI. Biological basis for Amyloidogenesis in Alzheimer’s disease. Biochem. (Moscow). 2017;82:122–39. https://doi.org/10.1134/s0006297917020043

    Article  CAS  Google Scholar 

  4. Jucker M, Walker LC. Pathogenic protein seeding in Alzheimer’s disease and other neurodegenerative disorders. Annal Neuro. 2011;70:532–40. https://doi.org/10.1002/ana.22615

    Article  CAS  Google Scholar 

  5. Sultana R, Butterfield DA. Role of oxidative stress in the progression of Alzheimer’s disease. J Alzheimer’s Dis. 2010;19:341–53. https://doi.org/10.3233/jad-2010-1222

    Article  Google Scholar 

  6. Kaur R, Mehan S, Singh S. Understanding multifactorial architecture of Parkinson’s disease: pathophysiology to management. Neurological Sci. 2019;40:13–23. https://doi.org/10.1007/s10072-018-3585-x

    Article  Google Scholar 

  7. Meng Q, Ru J, Zhang GL. Re-evaluation of tacrine hepatotoxicity using gel entrapped hepatocytes. Toxicol Lett. 2007;168:140–7. https://doi.org/10.1016/j.toxlet.2006.11.009

    Article  CAS  PubMed  Google Scholar 

  8. Wu WY, Chendai YU, Gu T. Novel multitarget-directed tacrine derivatives as potential candidates for the treatment of Alzheimer’s disease. J Enzyme Inhib Med Chem. 2017;32:572–87. https://doi.org/10.1080/14756366.2016.1210139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cavalli A, Bolognesi ML, Minarini A. Multi-target-directed ligands to combat neurodegenerative diseases. J Med Chem. 2008;51:347–72. https://doi.org/10.1021/jm7009364

    Article  CAS  PubMed  Google Scholar 

  10. Chen X, Decker ME. Multi-target compounds acting in the central nervous system designed from natural products. Cur Med Chem. 2013;20:1673–85. https://doi.org/10.2174/0929867311320130007

    Article  CAS  Google Scholar 

  11. Wang Y, Wang F, Yu JP. Novel multipotent phenylthiazole-tacrine hybrids for the inhibition of cholinesterase activity, β-Amyloid aggregation and Ca²+ overload. Bioorg Med Chem. 2012;20:6513–522. https://doi.org/10.1016/j.bmc.2012.08.040

    Article  CAS  PubMed  Google Scholar 

  12. Mohamed T, Rao PP. Alzheimer’s disease: emerging trends in small molecule therapies. Cur Med Chem. 2011;18:4299–320. https://doi.org/10.2174/092986711797200435

    Article  CAS  Google Scholar 

  13. Eghtedari M, Sarrafi Y, Nadri H, Mahdavi M, Moradi A, Homayouni MF, et al. New tacrine-derived AChE/BuChE inhibitors: Synthesis and biological evaluation of 5-amino-2-phenyl-4H-pyrano[2,3-b]quinoline-3-carboxylates. Eur J Med Chem. 2017;128:237–46. https://doi.org/10.1016/j.ejmech.2017.01.042

    Article  CAS  PubMed  Google Scholar 

  14. Pourabdi L, Khoobi M, Nadri H, Moradi A, Moghadam F, Emami S, et al. Synthesis and structure activity relationship study of tacrine-based pyrano[2,3-c] pyrazole stargeting AChE/BuChE and 15-LOX. Eur J Med Chem. 2016;123:298–308. https://doi.org/10.1016/j.ejmech.2016.07.043

    Article  CAS  PubMed  Google Scholar 

  15. Maalej E, Chabchoub F, Oset-Gasque MJ, Samadi MJ. Synthesis, biological assessment, and molecular modeling of racemic 7-aryl-9,10,11,12-tetrahydro-7H-benzo [7,8] chromeno[2,3-b]quinolin-8-amines as potential drugs for the treatment of Alzheimer’s disease. Eur J MedChem. 2012;54:750–63. https://doi.org/10.1016/j.ejmech.2012.06.038

    Article  CAS  Google Scholar 

  16. Dgachi Y, Bautista OM, Benchekroun M, Martin H, Bonet A, Marco-Contelles J, et al. Synthesis and biological evaluation of benzochromenopyrimidinones as cholinesterase inhibitors and potent antioxidant, non-hepatotoxic agents for Alzheimer’s disease. Mol. 2016;21:634. https://doi.org/10.3390/molecules21050634

    Article  CAS  Google Scholar 

  17. Hanish Singh JC, Alagarasamy V, Diwan PV, Kumar SS, Nisha JS, Reddy YN. Neuroprotective effect of Alpiniagalanga (L) fractions on Aβ(25-35) induced amnesia in mice. J Ethno Pharmacol. 2011;138:85–91. https://doi.org/10.1016/j.jep.2011.08.048

    Article  CAS  Google Scholar 

  18. Almoazen H, Bhattacharjee H, Samse AC, Patel S. Stability of mesna in readymade infusion devices. Ann Pharmacother. 2010;44:224–5. https://doi.org/10.1345/2Faph.1M390

    Article  PubMed  Google Scholar 

  19. Ellman GL, Courtney KD, Anders V, Featherstone RM. New and rapid colorimetric determination of acetyl cholinesterase activity. Biochem Pharmacol. 1961;7:88–95. https://doi.org/10.1016/0006-2952(61)90145-9

    Article  CAS  Google Scholar 

  20. Barros DM, Izquierdo LA, Mello ST, Ardenghi P, Pereira P, Medina JH, et al. Molecular signaling pathways in the cerebral cortex are required for retrieval of one‐trial inhibitory avoidance learning in rats. Behav Brain Res. 2000;114:183–92. https://doi.org/10.1016/S0166-4328(00)00226-6

    Article  CAS  PubMed  Google Scholar 

  21. Bornschein RL, Hastings L, Manson JM. Behavioral toxicity in the offspring of rats following maternal exposure to dichloromethane. Toxic Appl Pharmacol. 1980;52:29–37. https://doi.org/10.1016/0041-008X(80)90244-6

    Article  CAS  PubMed  Google Scholar 

  22. Garofalo P, Colombo S, Lanza M, Revel L, Makovec F. New putative memory enhancer, behavioral studies on learning and memory in rats and mice. J Pharm Pharmacol. 1996;48:1290–7. https://doi.org/10.1111/j.2042-7158.1996.tb03938.x

    Article  CAS  PubMed  Google Scholar 

  23. Buresova O, Bures J, Oitzl MSA. Radial maze in the water tank: an aversively motivated spatial working memory task Zahalka. Physiol Behav. 1985;34:1003–5. https://doi.org/10.1016/0031-9384(85)90028-9

    Article  CAS  PubMed  Google Scholar 

  24. Shear DA, Dong J, Creguer KL, Bazzett TJ, Albin RL, Dunbar GL. Chronic administration of quinolinic acid in the rat striatum causes spatial learning deficits in a radial arm water maze task. Exp Neurol. 1998;150:305–11. https://doi.org/10.1006/exnr.1998.6767

    Article  CAS  PubMed  Google Scholar 

  25. Goodarzi Z, Mele B, Guo S, Hanson H, Jette N, Patten S, et al. Guidelines for dementia or Parkinson’s disease with depression or anxiety, a systematic review. BMC Neurol. 2016;16:244–8. https://doi.org/10.1186/s12883-016-0754-5

    Article  PubMed  PubMed Central  Google Scholar 

  26. Conrad CD, Lupien SJ, Thanasoulis LC, McEwen BS. The effects of type I and type II corticosteroid receptor agonists on exploratory behavior and spatial memory in the Y-maze. Brain Res. 1997;759:76–83. https://doi.org/10.1016/S0006-8993(97)00236-9

    Article  CAS  PubMed  Google Scholar 

  27. Letteron P, Labbe G, Degott C, Berson A, Fromenty B, Larrey M, et al. Mechanism for the protective effects of silymarin against carbon tetrachloride-induced lipid peroxidation and hepatotoxicity in mice, evidence that silymarin acts both as an inhibitor of metabolic activation and as a chain-breaking antioxidant. Bio Chem Pharmacol. 1990;39:2027–34. https://doi.org/10.1016/0006-2952(90)90625-u

    Article  CAS  Google Scholar 

  28. Tsai JH, Liu JY, Wu TT, Ho PC, Huang CY, Shyu JC, et al. Effects of silymarin on the resolution of liver fibrosis induced by carbon tetrachloride in rats. J Viral Hep. 2008;15:508–14. https://doi.org/10.1111/j.1365-2893.2008.00971x

    Article  CAS  Google Scholar 

  29. Schrödinger Release 2019-1: Schrödinger Suite 2019-1 Protein Preparation Wizard; Epik, Schrödinger, LLC, New York, NY, 2019

  30. Dizdaroglu Y, Albay C, Arslan T, Ece A, Emir A, Turkoglu E, et al. Design, synthesis and molecular modelling studies of some pyrazole derivatives as carbonic anhydrase inhibitors. J Enzyme Inhib Med Chem. 2020;35:289–97. https://doi.org/10.1080/14756366.2019.1695791

    Article  CAS  PubMed  Google Scholar 

  31. Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ. GROMACS: fast, flexible, and free. J Comput Chem. 2005;26:1701–18. https://doi.org/10.1002/jcc.20291

    Article  CAS  Google Scholar 

  32. Vanommeslaeghe K, Hatcher E, Acharya C, Kundu S, Zhong S, Shim J, et al. CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J Comp Chem. 2010;31:671–90. https://doi.org/10.1002/jcc.21367

    Article  CAS  Google Scholar 

  33. Vanommeslaeghe K, MacKerell AD Jr. Automation of the CHARMM General Force Field (CGenFF) I: bond perception and atom typing. J Chem Inf Model. 2012;52:3144–54. https://doi.org/10.1021/ci300363c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bjelkmar P, Larsson P, Cuendet MA, Hess B, Lindahl E. Implementation of the CHARMM force field in GROMACS: analysis of protein stability effects from correction maps, virtual interaction sites, and water models. J Chem Theory Comp. 2010;6:459–66. https://doi.org/10.1021/ct900549r

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of the authors BM expresses thank to the University Grants Commission, New Delhi for financial support of this study. Authors thank the Principal, University College of Pharmaceutical Sciences, Kakatiya University, Warangal for providing necessary facilities. Authors RK and CB express gratitude Mr. Raghu Rangaswami and Dr. Prajwal Nandekar, Schrodinger, Bangalore for granting free one-monthlicense of Schrodinger Suite 2019 for docking studies. Both RK and CB appreciate the Principal and Management of Bharati Vidyapeeth’s Poona College of Pharmacy, Pune for providing all computational facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Achaiah Garlapati.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Macha, B., Kulkarni, R., Bagul, C. et al. Molecular hybridization based design and synthesis of new benzo[5,6]chromeno[2,3-b]-quinolin-13(14H)-one analogs as cholinesterase inhibitors. Med Chem Res 30, 685–701 (2021). https://doi.org/10.1007/s00044-020-02670-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-020-02670-w

Keywords

Navigation