Skip to main content
Log in

Enhanced Performance of Triboelectric Nanogenerator by Controlled Pore Size in Polydimethylsiloxane Composites with Au Nanoparticles

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Based on the contact electrification and electrostatic induction, triboelectric nanogenerators (TENGs) can convert the ambient mechanical energy into an electrical one. Having a role as both an energy storage and an output device, the enhancement of the TENG performance can be achieved by increasing their capacitance. Since the capacitance of tribo-materials can be engineered by their thickness and dielectric constant, we attempted to produce porous polydimethylsiloxane (PDMS) composites with Au nanoparticles (NPs) to engineer the capacitance. To this end, PDMS elastomers with various pore sizes were produced using sugar particles with a range of grain sizes. Then, the hydrophobic surface of PDMS elastomer was coated with polydopamine (PDA) to promote the homogeneous deposition of hydrophilic Au NPs on the PDMS surface. By using PDMS/PDA/Au composites, here we show the importance of pore size in adjusting the capacitance of the tribo-material. In particular, decoration of the PDMS surface with Au NPs engineered the dielectric constant of PDMS/PDA/Au composites, while the introduction of pores reduced the thickness of the composites under external pressure. Consequently, PDMS/PDA/Au composites exhibited enhanced TENG performance in a pore-size dependent manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Tang, X. Wang, R. Cattley, F. Gu, and A. D. Ball, Sensors, 18, 4113 (2018).

    Article  Google Scholar 

  2. X. Pu, W. Hu, and Z. L. Wang, Small, 14, 1702817 (2018).

    Article  Google Scholar 

  3. A. Nozariasbmarz, H. Collins, K. Dsouza, M. H. Polash, M. Hosseini, M. Hyland, J. Liu, A. Malhotra, F. M. Ortiz, F. Mohaddes, V. P. Ramesh, Y. Sargolzaeiaval, N. Snouwaert, M. C. Özturk, and D. Vashaee, Appl. Energy, 258, 114069 (2020).

    Article  Google Scholar 

  4. S. A. Hashemi, S. Ramakrishna, and A. G. Aberle, Energy Environ. Sci., 13, 685 (2020).

    Article  CAS  Google Scholar 

  5. Z. Yang, S. Zhou, J. Zu, and D. Inman, Joule, 2, 642 (2018).

    Article  CAS  Google Scholar 

  6. P. Sathiyanathan, D. M. Dhevi, A. A. Prabu, and K. J. Kim, Macromol. Res., 27, 743 (2019).

    Article  CAS  Google Scholar 

  7. Z. Liu, H. Li, B. Shi, Y. Fan, Z. L. Wang, and Z. Li, Adv. Funct. Mater., 19, 1808820 (2019).

    Article  Google Scholar 

  8. B.-Y. Lee, D. H. Kim, J. Park, K.-I. Park, K. J. Lee, and C. K. Jeong, Sci. Technol. Adv. Mater., 20, 759 (2019).

    Google Scholar 

  9. J. Chen and Z. L. Wang, Joule, 1, 480 (2017).

    Article  CAS  Google Scholar 

  10. Z. L. Wang, T. Jiang, and L. Xu, Nano Energy, 39, 9 (2017).

    Article  CAS  Google Scholar 

  11. B.-Y. Lee, S.-U. Kim, S. Kang, and S.-D. Lee, Nano Energy, 53, 152 (2018).

    Article  CAS  Google Scholar 

  12. X. Cheng, B. Meng, X. Chen, M. Han, H. Chen, Z. Su, M. Shi, and H. Zhang, Small, 12, 229 (2016).

    Article  CAS  PubMed  Google Scholar 

  13. J. Wang, Z. Wen, Y. Zi, L. Lin, C. Wu, H. Guo, Y. Xi, Y. Xu, and Z. L. Wang, Adv. Funct. Mater., 26, 3542 (2016).

    Article  CAS  Google Scholar 

  14. J. H. Lee, R. Hinchet, S. K. Kim, S. Kim, and S.-W. Kim, Energy Environ. Sci., 8, 3605 (2015).

    Article  CAS  Google Scholar 

  15. C. K. Jeong, K. M. Baek, S. Niu, T. W. Nam, Y. H. Hur, D. Y. Park, G.-T. Hwang, M. Byun, Z. L. Wang, Y. S. Jung, and K. J. Lee, Nano Lett., 14, 7031 (2014).

    Article  CAS  PubMed  Google Scholar 

  16. D. Kim, S. Lee, Y. Ko, C. H. Kwon, and J. Cho, Nano Energy, 44, 228 (2018).

    Article  CAS  Google Scholar 

  17. Y. Feng, Y. Zheng, S. Ma, D. Wang, F. Zhou, and W. Liu, Nano Energy, 19, 48 (2016).

    Article  CAS  Google Scholar 

  18. C. Park, G. Song, S. M. Cho, J. Chung, Y. Lee, E. H. Kim, M. Kim, S. Lee, J. Huh, and C. Park, Adv. Funct. Mater., 27, 1701367 (2017).

    Article  Google Scholar 

  19. S. Wang, Y. Zi, Y. S. Zhou, S. Li, F. Fan, L. Lin, and Z. L. Wang, J. Mater. Chem. A, 4, 3728 (2016).

    Article  CAS  Google Scholar 

  20. L. Liu, W. Tang, and Z. L. Wang, Nanotechnology, 28, 035405 (2017).

    Article  PubMed  Google Scholar 

  21. S. Wang, Y. Xie, S. Niu, L. Lin, C. Liu, Y. S. Zhou, and Z. L. Wang, Adv. Mater., 26, 6720 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. M. N. Biutty, J. M. Koo, M. Zakia, P. L. Handayani, U. H. Choi, and S. I. Yoo, RSC Adv., 10, 21309 (2020).

    Article  CAS  Google Scholar 

  23. Z. Fang, K. H. Chan, X. Liu, C. F. Tan, and G. W. Ho, J. Mater. Chem. A, 6, 52 (2018).

    Article  CAS  Google Scholar 

  24. J. Chen, H. Guo, X. He, G. Liu, Y. Xi, H. Shi, and C. Hu, ACS Appl. Mater. Interfaces, 8, 736 (2016).

    Article  CAS  PubMed  Google Scholar 

  25. J. Chun, J. W. Kim, W.-S. Jung, C.-Y. Kang, S.-W. Kim, Z. L. Wang, and J. M. Baik, Energy Environ. Sci., 8, 3006 (2015).

    Article  CAS  Google Scholar 

  26. X. He, H. Guo, X. Yue, J. Gao, Y. Xi, and C. Hu, Nanoscale, 7, 1896 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. C. Cui, X. Wang, Z. Yi, B. Yang, X. Wang, X. Chen, J. Liu, and C. Yang, ACS Appl. Mater. Interfaces, 10, 3652 (2018).

    Article  CAS  PubMed  Google Scholar 

  28. K. Y. Lee, J. Chun, J.-H. Lee, K. N. Kim, N.-R. Kang, J.-Y. Kim, M. H. Kim, K.-S. Shin, M. K. Gupta, J. M. Baik, and S.-W. Kim, Adv. Mater., 26, 5037 (2014).

    Article  CAS  PubMed  Google Scholar 

  29. D. Kim, S.-J. Park, S.-B. Jeon, M.-L. Seol, and Y.-K. Choi, Adv. Electron. Mater., 2, 1500331 (2016).

    Article  Google Scholar 

  30. W. Seung, H.-J. Yoon, T. Y. Kim, H. Ryu, J. Kim, J.-H. Lee, J. H. Lee, S. Kim, Y. K. Park, and S.-W. Kim, Adv. Energy Mater., 7, 1600988 (2017).

    Article  Google Scholar 

  31. J. Kim, J. H. Lee, H. Ryu, J.-H. Lee, U. Khan, H. Kim, S. S. Kwak, and S.-W. Kim, Adv. Funct. Mater., 27, 1700702 (2017).

    Article  Google Scholar 

  32. K. Halake, S. Bae, J. Lee, Y. Cho, H. Jo, J. Heo, K. Park, H. Kim, H. Ju, Y. Kim, A. Hasani, T. D. Pham, J. Choi, S. Hong, S. Choi, and J. Lee, Macromol. Res., 27, 109 (2019).

    Article  CAS  Google Scholar 

  33. J. H. Ryu, P. B. Messersmith, and H. Lee, ACS Appl. Mater. Interfaces, 10, 7523 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. J. Ryu, S. H. Ku, H. Lee, and C. B. Park, Adv. Funct. Mater., 20, 2132 (2010).

    Article  CAS  Google Scholar 

  35. M. Zakia, H. Song, C. H. Song, S.-M. Jin, E. Lee, Y. S. Won, K. Kim, K.-S. Kim, J. Yoon, and S. I. Yoo, J. Mater. Chem. C, 7, 5051 (2019).

    Article  CAS  Google Scholar 

  36. M. N. Biutty, M. Zakia, and S. I. Yoo, Bull. Korean Chem. Soc., 41, 1033 (2020).

    Article  CAS  Google Scholar 

  37. X. Liu, M. Atwater, J. Wang, and Q. Huo, Colloids Surf. B, 58, 3 (2007).

    Article  CAS  Google Scholar 

  38. P. Thurgood, S. Baratchi, C. Szydzik, A. Mitchell, and K. Khoshmanesh, Lab Chip, 12, 2517 (2017).

    Article  Google Scholar 

  39. S. D. Perrault and W. C. W. Chan, J. Am. Chem. Soc., 131, 17042 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. J. Y. Kim, S. H. Choi, J. H. An, and S. J. Lee, Macromol. Res., 27, 1104 (2019).

    Article  CAS  Google Scholar 

  41. D. Sharma, W. Jia, F. Long, S. Pati, Q. Chen, Y. Qyang, B. Lee, C. K. Choi, and F. Zhao, Bioact. Mater., 4, 142 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  42. J. Hu, S. Wu, Q. Cao, and W. Zhang, RSC Adv., 6, 81767 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by a Research Grant of Pukyong National University (2019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seong Il Yoo.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biutty, M.N., Yoo, S.I. Enhanced Performance of Triboelectric Nanogenerator by Controlled Pore Size in Polydimethylsiloxane Composites with Au Nanoparticles. Macromol. Res. 29, 98–104 (2021). https://doi.org/10.1007/s13233-021-9002-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-021-9002-y

Keywords

Navigation