Skip to main content
Log in

Supersymmetric W-algebras

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We explain a general theory of W-algebras in the context of supersymmetric vertex algebras. We describe the structure of W-algebras associated with odd nilpotent elements of Lie superalgebras in terms of their free generating sets. As an application, we produce explicit free generators of the W-algebra associated with the odd principal nilpotent element of the Lie superalgebra \(\mathfrak {gl}(n+1|n)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ademollo, M., Brink, L., D’Adda, A., D’Auria, R., Napolitano, E., Sciuto, S., Del Giudice, E., Di Vecchia, P., Ferrara, S., Gliozzi, F., Musto, R., Pettorino, R.: Supersymmetric strings and colour confinement. Phys. Lett. 62B, 105–110 (1976)

    Article  ADS  Google Scholar 

  2. Arakawa, T.: Introduction to \(W\)-algebras and their representation theory. In: Perspectives in Lie Theory. pp. 179–250, Springer INdAM Ser., 19, Springer, Cham, (2017)

  3. Arakawa, T., Molev, A.: Explicit generators in rectangular affine \({\cal{W}}\) -algebras of type \(A\). Lett. Math. Phys. 107, 47–59 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  4. Bakalov, B., Kac, V.G.: Field algebras. Int. Math. Res. Not. 3, 123–159 (2003)

    Article  MathSciNet  Google Scholar 

  5. Bouwknegt, P.: Extended conformal algebras from Kac–Moody algebras. In: Infinite-dimensional Lie Algebras and Lie Groups, Kac, V. (eds.) Proceedings of CIRM-Luminy Conference, 1988 (World Scientific, Singapore, 1989); Adv. Ser. Math. Phys. 7 (1988), 527

  6. Bouwknegt, P., Schoutens, K.: \({\cal{W}}\) -symmetry in conformal field theory. Phys. Rep. 223, 183–276 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  7. de Boer, J., Harmsze, F., Tjin, T.: Non-linear finite \(W\)-symmetries and applications in elementary systems. Phys. Rep. 272, 139–214 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  8. de Boer, J., Tjin, T.: The relation between quantum \(W\) algebras and Lie algebras. Commun. Math. Phys. 160, 317–332 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  9. De Sole, A., Kac, V.: Finite vs affine \(W\) -algebras. Jpn. J. Math. 1, 137–261 (2006)

    Article  MathSciNet  Google Scholar 

  10. Evans, J., Hollowood, T.: Supersymmetric Toda field theories. Nucl. Phys. B 352, 723–768 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  11. Fateev, V.A., Lukyanov, S.L.: The models of two-dimensional conformal quantum field theory with \(Z_n\) symmetry. Int. J. Mod. Phys. A 3, 507–520 (1988)

    Article  ADS  Google Scholar 

  12. Fehér, L., O’Raifeartaigh, L., Ruelle, P., Tsutsui, I., Wipf, A.: On hamiltonian reductions of the Wess-Zumino-Novikov-Witten theories. Phys. Rep. 222, 1–64 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  13. Feigin, B., Frenkel, E.: Quantization of the Drinfeld–Sokolov reduction. Phys. Lett. B 246, 75–81 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  14. Frappat, L., Ragoucy, E., Sorba, P.: \(W\)-algebras and superalgebras from constrained WZW models: a group theoretical classification. Comun. Math. Phys. 157, 499–548 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  15. Frenkel, E., Ben-Zvi, D.: Vertex Algebras and Algebraic Curves, Mathematical Surveys and Monographs, vol. 88, 2nd edn. AMS, Providence (2004)

    Book  Google Scholar 

  16. Heluani, R., Kac, V.G.: Supersymmetric vertex algebras. Commun. Math. Phys. 271, 103–178 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  17. Ito, K.: Quantum hamiltonian reduction and \(N=2\) coset models. Phys. Lett. B 259, 73–78 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  18. Ito, K.: \(N = 2\) superconformal \(CP_n\) model. Nucl. Phys. B 370, 123–142 (1992)

    Article  ADS  Google Scholar 

  19. Kac, V.: Vertex Algebras for Beginners, University Lecture Series, vol. 10, 2nd edn. AMS, Providence (1998)

    MATH  Google Scholar 

  20. Kac, V.: Introduction to vertex algebras, Poisson vertex algebras, and integrable Hamiltonian PDE. In: Perspectives in Lie Theory. (pp. 3–72). Springer, Cham, (2017)

  21. Kac, V., Roan, S.-S., Wakimoto, M.: Quantum reduction for affine superalgebras. Commun. Math. Phys. 241, 307–342 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  22. Kac, V., Wakimoto, M.: Quantum reduction and representation theory of superconformal algebras. Adv. Math. 185, 400–458 (2004)

    Article  MathSciNet  Google Scholar 

  23. Madsen, J.O., Ragoucy, E.: Quantum hamiltonian reduction in superspace formalism. Nucl. Phys. B 429, 277–290 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  24. Polyakov, A.M.: Gauge transformations and diffeomorphisms. Int. J. Mod. Phys. A 5, 833–842 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  25. Suh, U.R.: Structures of (Supersymmetric) Classical W-Algebras. arXiv:2004.07958

  26. Zamolodchikov, A.B.: Infinite extra symmetries in two-dimensional conformal quantum field theory. Teoret. Mat. Fiz. 65, 347–359 (1985)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uhi Rinn Suh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Molev, A., Ragoucy, E. & Suh, U.R. Supersymmetric W-algebras. Lett Math Phys 111, 6 (2021). https://doi.org/10.1007/s11005-020-01346-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11005-020-01346-1

Keywords

Mathematics Subject Classification

Navigation