Skip to main content
Log in

\({\varvec{\pi }}\)-systems of symmetrizable Kac–Moody algebras

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

As part of his classification of regular semisimple subalgebras of semisimple Lie algebras, Dynkin introduced the notion of a \(\pi \)-system. This is a subset of the set of roots such that pairwise differences of its elements are not roots. Such systems arise as simple systems of regular semisimple subalgebras. Morita and Naito generalized this notion to all symmetrizable Kac–Moody algebras. In this work, we systematically develop the theory of \(\pi \)-systems of symmetrizable Kac–Moody algebras and establish their fundamental properties. For several Kac–Moody algebras with physical significance, we study the orbits of the Weyl group on \(\pi \)-systems and completely determine the number of orbits. In particular, we show that there is a unique \(\pi \)-system of type \({A}^{++}_1\) (the Feingold–Frenkel rank 3 hyperbolic algebra) in \(E_{10}\) (the rank 10 hyperbolic algebra) up to Weyl group action and negation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Borel, A., De Siebenthal, J.: Les sous-groupes fermés de rang maximum des groupes de Lie clos. Comment. Math. Helv. 23, 200–221 (1949)

    Article  MathSciNet  Google Scholar 

  2. Carbone, L., Chung, S., Cobbs, L., McRae, R., Nandi, D., Naqvi, Y., Penta, D.: Classification of hyperbolic Dynkin diagrams, root lengths and Weyl group orbits. J. Phys. A: Math. Theor. 43(15), 155209 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  3. Damour, T., Henneaux, M., Nicolai, H.: Cosmological billiards. Class. Quantum Gravity 20(9), R145–R200 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  4. Damour, T., Hillmann, C.: Fermionic Kac–Moody billiards and supergravity. J. High Energy Phys. 2009(8), 100 (2009)

    Article  MathSciNet  Google Scholar 

  5. de Buyl, S., Schomblond, C.: Hyperbolic Kac Moody algebras and Einstein billiards. J. Math. Phys. 45(12), 4464–4492 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  6. Dyer, M.J., Lehrer, G.I.: Root subsystems of loop extensions. Transform. Groups 16(3), 767–781 (2011)

    Article  MathSciNet  Google Scholar 

  7. Dynkin, E.B.: Semisimple subalgebras of semisimple Lie algebras. In: Yushkevich, A.A., Seitz, G.M., Onishchik, A.L. (eds.) Selected Papers of E. B. Dynkin with Commentary. American Mathematical Society, Providence, RI (2000)

    MATH  Google Scholar 

  8. Dynkin, E.B., Minchenko, A.N.: Enhanced Dynkin diagrams and Weyl orbits. Transform. Groups 15(4), 813–841 (2010)

    Article  MathSciNet  Google Scholar 

  9. Englert, F., Houart, L., Tabti, N., Kleinschmidt, A., Nicolai, H.: An \(E_9\) multiplet of BPS states. J. High Energy Phys. 2007(5), 065 (2007)

    Article  Google Scholar 

  10. Feingold, A.J., Frenkel, I.B.: A hyperbolic Kac–Moody algebra and the theory of Siegel modular forms of genus 2. Math. Ann. 263(1), 87–144 (1983)

    Article  MathSciNet  Google Scholar 

  11. Feingold, A.J., Nicolai, H.: Subalgebras of hyperbolic Kac–Moody algebras. Kac–Moody Lie Algebras and Related Topics. Contemporary Mathematics, vol. 343, pp. 97–114. American Mathematical Society, Providence, RI (2004)

    Chapter  Google Scholar 

  12. Felikson, A., Retakh, A., Tumarkin, P.: Regular subalgebras of affine Kac–Moody algebras. J. Phys. A 41(36), 365204 (2008)

    Article  MathSciNet  Google Scholar 

  13. Henneaux, M., Leston, M., Persson, D., Spindel, P.: Geometric configurations, regular subalgebras of \({E}_{10}\) and \({M}\)-theory cosmology. J. High Energy Phys. 2006(10), 021 (2006)

    Article  Google Scholar 

  14. Henneaux, M., Persson, D., Spindel, P.: Spacelike singularities and hidden symmetries of gravity. Living Rev. Relat. 11(1), 1 (2008)

    Article  ADS  Google Scholar 

  15. Julia, B.: Group disintegrations. In: Hawking, S.W., Rocek, M. (eds.) Superspace and Supergravity, vol. 331. Cambridge University Press, Cambridge (1981)

    Google Scholar 

  16. Kac, V.G.: Infinite-dimensional algebras, Dedekind’s \(\eta \)-function, classical Möbius function and the very strange formula. Adv. Math. 30(2), 85–136 (1978)

    Article  MathSciNet  Google Scholar 

  17. Kac, V.G.: Infinite-Dimensional Lie Algebras, 3rd edn. Cambridge University Press, Cambridge (1990)

    Book  Google Scholar 

  18. Kleinschmidt, A., Nicolai, H.: \(E_{10}\) and \(SO(9,9)\) invariant supergravity. J. High Energy Phys. 2004(7), 041 (2004)

    Article  Google Scholar 

  19. Kleinschmidt, A., Nicolai, H.: Gradient representations and affine structures in \(AE_n\). Class. Quantum Gravity 22(21), 4457–4487 (2005)

    Article  ADS  Google Scholar 

  20. Kobayashi, Z., Morita, J.: Automorphisms of certain root lattices. Tsukuba J. Math. 7(2), 323–336 (1983)

    Article  MathSciNet  Google Scholar 

  21. Morita, J.: Certain rank two subsystems of Kac–Moody root systems. In: Infinite-Dimensional Lie Algebras and Groups (Luminy-Marseille, 1988)Advanced Series in Mathematical Physics, vol. 7 , pp. 52–56. World Scientific Publishing, Teaneck, NJ (1989)

  22. Naito, S.: On regular subalgebras of Kac–Moody algebras and their associated invariant forms. Symmetrizable case. J. Math. Soc. Jpn. 44(2), 157–177 (1992)

    Article  MathSciNet  Google Scholar 

  23. Onishchik, A.L., Vinberg, E.B.: Lie Groups and Algebraic Groups. Springer Series in Soviet Mathematics. Springer, Berlin (1990)

    Book  Google Scholar 

  24. Oshima, T.: A classification of subsystems of a root system. arXiv:math/0611904 (2006)

  25. Roy, K., Venkatesh, R.: Maximal closed subroot systems of real affine root systems. Transform. Groups 24(4), 1261–1308 (2019)

    Article  MathSciNet  Google Scholar 

  26. Saçlioğlu, C.: Dynkin diagrams for hyperbolic Kac–Moody algebras. J. Phys. A 22(18), 3753–3769 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  27. Viswanath, S.: Embeddings of hyperbolic Kac–Moody algebras into \(E_{10}\). Lett. Math. Phys. 83(2), 139–148 (2008)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Thibault Damour for suggesting that we try to prove conjugacy of embeddings of \({A}^{++}_1\) into \(E_{10}\), and for many illuminating discussions. We also wish to thank Ling Bao, Paul Cook and Axel Kleinschmidt for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sankaran Viswanath.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The first author’s research is partially supported by the Simons Foundation, Mathematics and Physical Sciences-Collaboration Grants for Mathematicians, Award Number 422182. KNR and SV acknowledge support from DAE under a XII plan project. KR acknowledges SICI for an SRSF grant.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carbone, L., Raghavan, K.N., Ransingh, B. et al. \({\varvec{\pi }}\)-systems of symmetrizable Kac–Moody algebras. Lett Math Phys 111, 5 (2021). https://doi.org/10.1007/s11005-020-01345-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11005-020-01345-2

Keywords

Mathematics Subject Classification

Navigation