Skip to main content
Log in

Structural diversity, large interlayer spacing and switchable electronic properties of graphitic systems

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Recent experiments reported a substantial toughening of nanotwinned diamond (nt-diamond) composite with coherently interfaced diamond polytypes (different stacking sequences). This discovery emphasizes the diversity of graphite-like structures in carbon onion precursors for synthesizing nt-diamond composite. We designed five new graphitic polytypes to investigate structural diversity in graphitic systems. Under ambient pressure, the energies of all the proposed polytypes are between those of graphite (AB structure) and a previously predicted AA structure. Dynamic and elastic stability results showed that four structures (AB'C', AB'D', AAB and ABCB) can be stable under ambient pressure. These four structures all have a large interlayer distance comparable to those in carbon onion and turbostratic graphite. Chiral graphitic structures (AB'D' and AB'C') with reversible electrical properties under slight stress might be responsible for the controversy about the bandgap of graphitic samples. Therefore, these four structures are most likely to be a part of the structures existing in carbon onion and turbostratic graphite or are structural defects in graphitic samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Lipson H, Stokes AR (1942) The structure of graphite. Proc R Soc A Math Phys Eng Sci 181:101–105. https://doi.org/10.1098/rspa.1942.0063

    Article  CAS  Google Scholar 

  2. Oya A, Marsh H (1982) Phenomena of catalytic graphitization. J Mater Sci 17:309–322. https://doi.org/10.1007/BF00591464

    Article  CAS  Google Scholar 

  3. Klimenkov VI (1962) Behavior of graphite in nuclear reactor stacks. Sov J At Energy 10:439–450. https://doi.org/10.1007/BF01674506

    Article  Google Scholar 

  4. García N, Esquinazi P, Barzola-Quiquia J, Dusari S (2012) Evidence for semiconducting behavior with a narrow band gap of Bernal graphite. New J Phys. https://doi.org/10.1088/1367-2630/14/5/053015

    Article  Google Scholar 

  5. Evans TE, Moyer RA, Burrell KH et al (2006) Edge stability and transport control with resonant magnetic perturbations in collisionless tokamak plasmas. Nat Phys 2:419–423. https://doi.org/10.1038/nphys312

    Article  CAS  Google Scholar 

  6. Trogadas P, Fuller TF, Strasser P (2014) Carbon as catalyst and support for electrochemical energy conversion. Carbon 75:5–42. https://doi.org/10.1016/j.carbon.2014.04.005

    Article  CAS  Google Scholar 

  7. Raccichini R, Varzi A, Passerini S, Scrosati B (2015) The role of graphene for electrochemical energy storage. Nat Mater 14:271. https://doi.org/10.1038/nmat4170

    Article  CAS  Google Scholar 

  8. Li Y, Zhou W, Wang H et al (2012) An oxygen reduction electrocatalyst based on carbon nanotube–graphene complexes. Nat Nanotechnol 7:394. https://doi.org/10.1038/nnano.2012.72

    Article  CAS  Google Scholar 

  9. Bonaccorso F, Colombo L, Yu G et al (2015) Graphene, related two-dimensional crystals and hybrid systems for energy conversion and storage. Science 347:41

    Article  CAS  Google Scholar 

  10. Pumera M (2011) Graphene-based nanomaterials for energy storage. Energy Environ Sci 4:668–674. https://doi.org/10.1039/c0ee00295j

    Article  CAS  Google Scholar 

  11. Que Y, Xiao W, Chen H et al (2015) Stacking-dependent electronic property of trilayer graphene epitaxially grown on Ru (0001). Appl Phys Lett 107:263101. https://doi.org/10.1063/1.4938466

    Article  CAS  Google Scholar 

  12. Charlier JC, Michenaud JP, Lambin P (1992) Tight-binding density of electronic states of pregraphitic carbon. Phys Rev B 46:4540–4543. https://doi.org/10.1103/PhysRevB.46.4540

    Article  CAS  Google Scholar 

  13. Choucair M, Stride JA (2012) The gram-scale synthesis of carbon onions. Carbon 50:1109–1115. https://doi.org/10.1016/j.carbon.2011.10.023

    Article  CAS  Google Scholar 

  14. Charlier JC, Gonze X, Michenaud JP (1994) First-principles study of the stacking effect on the electronic properties of graphite (s). Carbon 32:289–299. https://doi.org/10.1016/0008-6223(94)90192-9

    Article  CAS  Google Scholar 

  15. Bacon G (1950) A note on the rhombohedral modification of graphite. Acta Crystallogr 3:320. https://doi.org/10.1107/S0365110X50000872

    Article  CAS  Google Scholar 

  16. Gasparoux H (1967) Modification des propriétés magnétiques du graphite par création de sequences rhomboédriques. Carbon 5:441–451

    Article  CAS  Google Scholar 

  17. Horiuchi S, Gotou T, Fujiwara M et al (2003) Carbon nanofilm with a new structure and property. Jpn J Appl Physics Part 2 Lett. 42:1073–1076. https://doi.org/10.1143/JJAP.42.L1073

    Article  CAS  Google Scholar 

  18. Hwang J, Shields VB, Thomas CI et al (2010) Epitaxial growth of graphitic carbon on C-face SiC and sapphire by chemical vapor deposition (CVD). J Cryst Growth 312:3219–3224. https://doi.org/10.1016/J.JCRYSGRO.2010.07.046

    Article  CAS  Google Scholar 

  19. Juang ZY, Wu CY, Lu AY et al (2010) Graphene synthesis by chemical vapor deposition and transfer by a roll-to-roll process. Carbon 48:3169–3174. https://doi.org/10.1016/j.carbon.2010.05.001

    Article  CAS  Google Scholar 

  20. Rong ZY, Kuiper P (1993) Electronic effects in scanning-tunneling-microscopy-moire pattern on a graphite surface. Phys Rev B 48:17427–17431. https://doi.org/10.1103/PhysRevB.48.17427

    Article  CAS  Google Scholar 

  21. Campanera JM, Savini G, Suarez-Martinez I, Heggie MI (2007) Density functional calculations on the intricacies of Moiré patterns on graphite. Phys Rev B 75:235449. https://doi.org/10.1103/PhysRevB.75.235449

    Article  CAS  Google Scholar 

  22. Biedermann LB, Bolen ML, Capano MA et al (2009) Insights into few-layer epitaxial graphene growth on 4H-SiC(000 1) substrates from STM studies. Phys Rev B 79:125411. https://doi.org/10.1103/PhysRevB.79.125411

    Article  CAS  Google Scholar 

  23. Lui CH, Malard LM, Kim S et al (2012) Observation of layer-breathing mode vibrations in few-layer graphene through combination Raman scattering. Nano Lett 12:5539–5544. https://doi.org/10.1021/nl302450s

    Article  CAS  Google Scholar 

  24. Ellis CT, Stier AV, Kim M et al (2013) Magneto-optical fingerprints of distinct graphene multilayers using the giant infrared Kerr effect. Sci Rep 3:3143. https://doi.org/10.1038/srep03143

    Article  Google Scholar 

  25. Lalmi B, Girard JC, Pallecchi E et al (2015) Flower-shaped domains and wrinkles in trilayer epitaxial graphene on silicon carbide. Sci Rep 4:4066. https://doi.org/10.1038/srep04066

    Article  CAS  Google Scholar 

  26. Novoselov KS, Geim AK, Morozov SV et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669. https://doi.org/10.1126/science.1102896

    Article  CAS  Google Scholar 

  27. Mak KF, Sfeir MY, Misewich JA, Heinz TF (2010) The evolution of electronic structure in few-layer graphene revealed by optical spectroscopy. Proc Natl Acad Sci 107:14999–15004. https://doi.org/10.1073/pnas.1004595107

    Article  Google Scholar 

  28. Zhang L, Zhang Y, Camacho J et al (2011) The experimental observation of quantum Hall effect of l=3 chiral quasiparticles in trilayer graphene. Nat Phys 7:953–957. https://doi.org/10.1038/nphys2104

    Article  CAS  Google Scholar 

  29. Cao Y, Fatemi V, Demir A et al (2018) Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556:80–84. https://doi.org/10.1038/nature26154

    Article  CAS  Google Scholar 

  30. Cao Y, Fatemi V, Fang S et al (2018) Unconventional superconductivity in magic-angle graphene superlattices. Nature 556:43–50. https://doi.org/10.1038/nature26160

    Article  CAS  Google Scholar 

  31. Lenski DR, Fuhrer MS (2011) Raman and optical characterization of multilayer turbostratic graphene grown via chemical vapor deposition. J Appl Phys 110:13720. https://doi.org/10.1063/1.3605545

    Article  CAS  Google Scholar 

  32. Savini G, Dappe YJ, Öberg S et al (2011) Bending modes, elastic constants and mechanical stability of graphitic systems. Carbon 49:62–69. https://doi.org/10.1016/j.carbon.2010.08.042

    Article  CAS  Google Scholar 

  33. Charlier JC, Michenaud JP, Gonze X (1992) First-principles study of the electronic properties of simple hexagonal graphite. Phys Rev B 46:4531–4539. https://doi.org/10.1103/PhysRevB.46.4531

    Article  CAS  Google Scholar 

  34. Scandolo S, Bernasconi M, Chiarotti GL et al (1995) Pressure-induced transformation path of graphite to diamond. Phys Rev Lett 74:4015–4018. https://doi.org/10.1103/PhysRevLett.74.4015

    Article  CAS  Google Scholar 

  35. Kolmogorov AN, Crespi VH (2005) Registry-dependent interlayer potential for graphitic systems. Phys Rev B 71:235415. https://doi.org/10.1103/PhysRevB.71.235415

    Article  CAS  Google Scholar 

  36. Mailhiot C, McMahan AK (1991) Atmospheric-pressure stability of energetic phases of carbon. Phys Rev B 44:11578–11591. https://doi.org/10.1103/PhysRevB.44.11578

    Article  CAS  Google Scholar 

  37. Zoraghi M, Barzola-Quiquia J, Stiller M et al (2017) Influence of rhombohedral stacking order in the electrical resistance of bulk and mesoscopic graphite. Phys Rev B 95:045308. https://doi.org/10.1103/PhysRevB.95.045308

    Article  Google Scholar 

  38. Huang Q, Yu D, Xu B et al (2014) Nanotwinned diamond with unprecedented hardness and stability. Nature 510:250–253. https://doi.org/10.1038/nature13381

    Article  CAS  Google Scholar 

  39. Yue Y, Gao Y, Hu W et al (2020) Hierarchically structured diamond composite with exceptional toughness. Nature 582:370–374. https://doi.org/10.1038/s41586-020-2361-2

    Article  CAS  Google Scholar 

  40. Boulfelfel SE, Oganov AR, Leoni S (2012) Understanding the nature of “superhard graphite.” Sci Rep 2:471. https://doi.org/10.1038/srep00471

    Article  CAS  Google Scholar 

  41. Avery P, Wang X, Oses C et al (2019) Predicting superhard materials via a machine learning informed evolutionary structure search. NPJ Comput Mater 5:89. https://doi.org/10.1038/s41524-019-0226-8

    Article  Google Scholar 

  42. Hoffmann R, Kabanov AA, Golov AA, Proserpio DM (2016) Homo citans and carbon allotropes: For an ethics of citation. Angew Chemie Int Ed 55:10962–10976. https://doi.org/10.1002/anie.201600655

    Article  CAS  Google Scholar 

  43. Garvie LAJ, Nemeth P, Buseck PR (2014) Transformation of graphite to diamond via a topotactic mechanism. Am Mineral 99:531–538. https://doi.org/10.2138/am.2014.4658

    Article  Google Scholar 

  44. Németh P, McColl K, Garvie LAJ et al (2020) Complex nanostructures in diamond. Nat Mater 19:1126–1131. https://doi.org/10.1038/s41563-020-0759-8

    Article  CAS  Google Scholar 

  45. Németh P, McColl K, Smith RL et al (2020) Diamond-Graphene Composite Nanostructures. Nano Lett 20:3611–3619. https://doi.org/10.1021/acs.nanolett.0c00556

    Article  CAS  Google Scholar 

  46. Materials Studio Program, version 7.0; Accelrys Inc.: San Diego, CA, 2012

  47. Luo K, Yuan X, Zhao Z et al (2017) New hexagonal boron nitride polytypes with triple-layer periodicity. J Appl Phys 121:165102. https://doi.org/10.1063/1.4981892

    Article  CAS  Google Scholar 

  48. Clark SJ, Segall MD, Pickard CJ et al (2005) First principles methods using CASTEP. Zeitschrift für Krist-Cryst Mater 220:567–570. https://doi.org/10.1524/zkri.220.5.567.65075

    Article  CAS  Google Scholar 

  49. Hamann DR, Schlüter M, Chiang C (1979) Norm-conserving pseudopotentials. Phys Rev Lett 43:1494. https://doi.org/10.1103/PhysRevLett.43.1494

    Article  CAS  Google Scholar 

  50. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188. https://doi.org/10.1103/PhysRevB.13.5188

    Article  Google Scholar 

  51. Ortmann F, Bechstedt F, Schmidt WG (2006) Semiempirical van der Waals correction to the density functional description of solids and molecular structures. Phys Rev B 73:205101. https://doi.org/10.1103/PhysRevB.73.205101

    Article  CAS  Google Scholar 

  52. Perdew JP, Chevary JA, Vosko SH et al (1993) Erratum: Atoms, molecules, solids and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys Rev B 48:4978. https://doi.org/10.1103/PhysRevB.48.4978.2

    Article  CAS  Google Scholar 

  53. Pfrommer BG, Côté M, Louie SG, Cohen ML (1997) Relaxation of Crystals with the Quasi-Newton Method. J Comput Phys 131:233–240. https://doi.org/10.1006/jcph.1996.5612

    Article  CAS  Google Scholar 

  54. Chan MKY, Ceder G (2010) Efficient band gap prediction for solids. Phys Rev Lett 105:196403. https://doi.org/10.1103/PhysRevLett.105.196403

    Article  CAS  Google Scholar 

  55. Krukau AV, Vydrov OA, Izmaylov AF, Scuseria GE (2006) Influence of the exchange screening parameter on the performance of screened hybrid functionals. J Chem Phys 125:224106. https://doi.org/10.1063/1.2404663

    Article  CAS  Google Scholar 

  56. Baroni S, Giannozzi P, Testa A (1987) Green’s-function approach to linear response in solids. Phys Rev Lett 58:1861–1864. https://doi.org/10.1103/PhysRevLett.58.1861

    Article  CAS  Google Scholar 

  57. Giannozzi P, de Gironcoli S, Pavone P, Baroni S (1991) Ab initio calculation of phonon dispersions in semiconductors. Phys Rev B 43:7231–7242. https://doi.org/10.1103/PhysRevB.43.7231

    Article  CAS  Google Scholar 

  58. Setyawan W, Curtarolo S (2010) High-throughput electronic band structure calculations: Challenges and tools. Comput Mater Sci 49:299–312. https://doi.org/10.1016/j.commatsci.2010.05.010

    Article  Google Scholar 

  59. Curtarolo S, Setyawan W, Hart GLW et al (2012) AFLOW: An automatic framework for high-throughput materials discovery. Comput Mater Sci 58:218–226. https://doi.org/10.1016/j.commatsci.2012.02.005

    Article  CAS  Google Scholar 

  60. Bosak A, Krisch M, Mohr M et al (2007) Elasticity of single-crystalline graphite: Inelastic x-ray scattering study. Phys Rev B 75:153408. https://doi.org/10.1103/PhysRevB.75.153408

    Article  CAS  Google Scholar 

  61. Ceperley DM, Alder BJ (1980) Ground state of the electron gas by a stochastic method. Phys Rev Lett 45:566–569. https://doi.org/10.1103/PhysRevLett.45.566

    Article  CAS  Google Scholar 

  62. Perdew JP, Zunger A (1981) Self-interaction correction to density-functional approximations for many-electron systems. Phys Rev B 23:5048–5079. https://doi.org/10.1103/physrevb.23.5048

    Article  CAS  Google Scholar 

  63. Perdew JP, Burke K, Ernzerhof M (1996) Generalized dradient approximation made simple. Phys Rev Lett 77:3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865

    Article  CAS  Google Scholar 

  64. Tkatchenko A, Scheffler M (2009) Accurate molecular Van Der Waals interactions from ground-state electron density and free-atom reference data. Phys Rev Lett 102:73004–73005. https://doi.org/10.1103/PhysRevLett.102.073005

    Article  CAS  Google Scholar 

  65. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1799. https://doi.org/10.1002/jcc.20495

    Article  CAS  Google Scholar 

  66. Torche A, Mauri F, Charlier JC, Calandra M (2017) First-principles determination of the Raman fingerprint of rhombohedral graphite. Phys Rev Mater 1:041001. https://doi.org/10.1103/PhysRevMaterials.1.041001

    Article  Google Scholar 

  67. Lin CY, Wu JY, Ou YJ et al (2015) Magneto-electronic properties of multilayer graphenes. Phys Chem Chem Phys 17:26008–26035. https://doi.org/10.1039/C5CP05013H

    Article  CAS  Google Scholar 

  68. Do TN, Lin CY, Lin YP et al (2015) Configuration-enriched magneto-electronic spectra of AAB-stacked trilayer graphene. Carbon 94:619–632. https://doi.org/10.1016/j.carbon.2015.07.027

    Article  CAS  Google Scholar 

  69. Chiu CW, Chen RB (2016) Influence of electric fields on absorption spectra of AAB-stacked trilayer graphene. Appl Phys Express 9:065103. https://doi.org/10.7567/APEX.9.065103

    Article  CAS  Google Scholar 

  70. Do TN, Chang CP, Shih PH, Lin MF (2017) Stacking-enriched magneto-transport properties of few-layer graphenes. Phys Chem Chem Phys 19:29525–29533. https://doi.org/10.1039/c7cp05614a

    Article  CAS  Google Scholar 

  71. Born M (1940) On the stability of crystal lattices. I Math Proc Cambridge Philos Soc 36:160–172. https://doi.org/10.1017/S0305004100017138

    Article  CAS  Google Scholar 

  72. Born M, Huang K (1954) Dynamical theory of crystal lattices. Am J Phys 23:474. https://doi.org/10.1119/1.1934059

    Article  Google Scholar 

  73. Mouhat F, Coudert F-X (2014) Necessary and sufficient elastic stability conditions in various crystal systems. Phys Rev B 90:224104. https://doi.org/10.1103/PhysRevB.90.224104

    Article  CAS  Google Scholar 

  74. Anees P, Valsakumar MC, Chandra S, Panigrahi BK (2014) Ab initio study on stacking sequences, free energy, dynamical stability and potential energy surfaces of graphite structures. Model Simul Mater Sci Eng 22:035016. https://doi.org/10.1088/0965-0393/22/3/035016

    Article  CAS  Google Scholar 

  75. Wallace PR (1947) The Band Theory of Graphite. Phys Rev 71:622–634. https://doi.org/10.1103/PhysRev.71.622

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the national key research and development program of China (Grant No. 2018YFA0305900) and the national natural science foundation of China (Grants Nos. 91963203, 51722209, 51272227 and 51525205). Z. Zhao acknowledges NSF for Distinguished young scholars of Hebei Province of China (Grants No. E2018203349). K. Luo also acknowledges the project funded by China postdoctoral science foundation (2017M620097).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kun Luo or Julong He.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Handling Editor: David Cann.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 1697 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Q., Luo, K., Sun, L. et al. Structural diversity, large interlayer spacing and switchable electronic properties of graphitic systems. J Mater Sci 56, 5509–5519 (2021). https://doi.org/10.1007/s10853-020-05657-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05657-5

Navigation