Skip to main content
Log in

Superconducting 3D Multi-layer Sample Simulated Via Nonuniform Ginzburg–Landau Parameter

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Our study sample is a mesoscopic superconducting three-dimensional parallelepiped immersed in a magnetic field \(H_{z}\). The sample presents an anisotropy of the Ginzburg–Landau parameter \(\kappa (z)\) in the z-axis. This dependence allows us to simulate a superconducting three layer system, where the top and bottom layers are made of a type-II superconducting material, and the middle layer is fabricated of a type-I material. We analyzed the superconducting electron density, free energy, and the magnetization curves as functions of H for different values of \(\kappa (z)\). Due to the effects of proximity and shielding on the borders of the layers, Abrikosov vortices are present in the type I regions, and a fractional vortex state is present in the type II superconducting region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M.M. Doria, A.R. Romaguera, F.M. Peeters, Phys. Rev. B 75, 064505 (2007)

    Article  ADS  Google Scholar 

  2. W.A. Little, R.D. Parks, Phys. Rev. Lett. 9, 9 (1962)

    Article  ADS  Google Scholar 

  3. N. Filipp, N. Rybakov, J. Garaud, E. Babaev, Phys. Rev. B 100, 094515 (2019)

    Article  ADS  Google Scholar 

  4. E.H. Brandt, Phys. Rev. B 72, 024529 (2005)

    Article  ADS  Google Scholar 

  5. E.H. Brandt, Physica C 460, 327 (2005)

    ADS  Google Scholar 

  6. F. Rogeri, R. Zadorosny, P.N. Lisboa-Filho, E. Sardella, W.A. Ortiz, Sci. Technol. 26, 075005 (2013)

    ADS  Google Scholar 

  7. G. Blatter, M.V. Feigel’man, V.B. Geshkenbein, A.I. Larkin, V.M. Vinokur, Rev. Mod. Phys. 66, 1125 (1994)

    Article  ADS  Google Scholar 

  8. E. Zeldov, A.I. Larkin, V.B. Geshkenbein, M. Konczykowski, D. Majer, B. Khaykovich, V.M. Vinokur, H. Shtrikman, Phys. Rev. Lett. 73, 1428 (1994)

    Article  ADS  Google Scholar 

  9. J. Garaud, J. Carlström, E. Babaev, M. Speight, Phys. Rev. B 87, 014507 (2013)

    Article  ADS  Google Scholar 

  10. L. Wen, G.Q. Zha, S.P. Zhou, Eur. Phys. Lett. 102, 27004 (2013)

    Article  ADS  Google Scholar 

  11. M. Silaev, E. Babaev, Phys. Rev. B 85, 134514 (2012)

    Article  ADS  Google Scholar 

  12. S. Gillis, J. Jäykkä, M.V. Milošević, Phys. Rev. B 89, 024512 (2018)

    Article  ADS  Google Scholar 

  13. T. Nunes, C. Aguirre, A. de Arruda, J. Barba, Eur. Phys. J. B 93, 69 (2020)

    Article  ADS  Google Scholar 

  14. L. Komendová, M.V. Milošević, F.M. Peeters, Phys. Rev. B 88, 094515 (2013)

    Article  ADS  Google Scholar 

  15. J. Garaud, M. N. Chernodub, D. E. Kharzeev, (2019). arXiv:2003.10917v1

  16. M. N. Chernodub, J. Garaud, D. E. Kharzeev, (2019). arXiv:1908.00392v1

  17. M. Smidman, M.B. Salamon, H.Q. Yuan, D.F. Agterberg, Rep. Prog. Phys. 80, 036501 (2017)

    Article  ADS  Google Scholar 

  18. A. Gurevich, Phys. Rev. B 98, 024506 (2018)

    Article  ADS  Google Scholar 

  19. M. Eto, T. Fujimori, S.B. Gudnason, K. Konishi, T. Nagashima, M. Nitta, K. Ohashi, W. Vinci, Phys. Rev. D 80, 045018 (2009)

    Article  ADS  Google Scholar 

  20. R. Geurts, M.V. Milosević, J. Albino, F.M. Peeters, Phys. Rev. B 87, 024501 (2013)

    Article  ADS  Google Scholar 

  21. E. Babaev, J. Carlström, M. Silaev, J. Speight, Physica C 533, 20 (2017)

    Article  ADS  Google Scholar 

  22. F.S. Portela, L.T. Corredo, P. Barrozo, S.G. Jung, G. Zhang, J. Vanacken, V.V. Moshchalkov, J. Albino, Aguiar, Sci. Technol. 28, 034001 (2015)

    ADS  Google Scholar 

  23. Y. Tanaka, H. Yamamori, T. Yanagisawa, T. Nishio, S. Arisawa, Physica C 548, 44 (2018)

    Article  ADS  Google Scholar 

  24. R. Cordoba, P. Orus, Z.L. Jelic, J. Sese, M.R. Ibarra, I. Guillamon, S. Vieira, J.J. Palacios, H. Suderow, M.V. Milosevic, J.M. De Teresa, Sci. Rep. 9, 12386 (2019)

    Article  ADS  Google Scholar 

  25. C. Aguirre, M.R. Joya, J. Barba-Ortega, J. Low Temp. Phys. 186, 250 (2017)

    Article  ADS  Google Scholar 

  26. C. Aguirre, H. Blas, J. Barba-Ortega, Physica C 554, 8 (2018)

    Article  ADS  Google Scholar 

  27. C.A. Aguirre, Q. Martins, J. Barba-Ortega, Revista UIS Ingenierías 18(2), 213 (2019)

    Article  Google Scholar 

  28. C. Aguirre, H. Achic, J. Barba-Ortega, Low. Temp. Phys 195, 124 (2019)

    Article  ADS  Google Scholar 

  29. W.Y. Cordoba-Camacho, R.M. da Silva, A.A. Shanenko, A. Vagov, A.S. Vasenko, B.G. Lvov, J. Albino Aguiar, J. Phys. Cond. Matt 32, 7 (2019)

    Google Scholar 

  30. W. Y. Cordoba-Camacho, A. Vagov, A . A. Shanenko, J. Albino Aguiar, V. S. Stolyarov, A. S. Vasenko, (2019). arXiv:1911.08524

  31. A.A. Vargas-Paredes, A.A. Shanenko, A. Vagov, M.V. Milosevic, A. Perali, Phys. Rev. B 101, 094516 (2020)

    Article  ADS  Google Scholar 

  32. J. Barba-Ortega, E. Sardella, J.A. Aguiar, Phys. Lett. A 379, 732 (2015)

    Article  Google Scholar 

  33. R.M. da Silva, M.V. Milošević, D. Dominguez, F.M. Peeters, J. Albino Aguiar, Appl. Phys. Lett. 105, 232601 (2014)

    Article  ADS  Google Scholar 

  34. V. Fernndez Becerra, E. Sardella, F.M. Peeters, M.V. Milošević, Phys. Rev. B 93, 014518 (2016)

    Article  ADS  Google Scholar 

  35. W.D. Gropp, H.G. Kaper, G.K. Leaf, D.M. Levine, M. Palumbo, V.M. Vinokur, J. Comput. Phys. 123, 254 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  36. G. Buscaglia, C. Bolech, C. Lopez Connectivity and Superconductivity ed. J. Berger and J. Rubinstein (Heidelberg: Springer) (2000)

  37. M.V. Milošević, R. Geurts, Physica C 470, 791 (2010)

    Article  ADS  Google Scholar 

  38. M. Rittweger, I. Wolff, IEEE Antennas and Propagation Society International Symposium 1992, (1992)

  39. Y. Tanaka, Sup. Sci. and Tech. 28, 034002 (2015)

    Article  ADS  Google Scholar 

  40. R. Geurts, M.V. Milošević, F.M. Peeters, Phys. Rev. B 81, 214514 (2010)

    Article  ADS  Google Scholar 

  41. L.F. Chibotaru, V.H. Dao, A. Ceulemans, Europhys. Lett. 78, 47001 (2007)

    Article  ADS  Google Scholar 

  42. L.F. Chibotaru, V.H. Dao, Phys. Rev. B 81, 020502 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

C .A. Aguirre would like to thank the Brazilian Agency CAPES for financial support and the Ph.D fellowship, grant number 089.229.801-89. Q. M. would like to thank the Brazilian Agency Fapero-CAPES for financial support, grant number 008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Barba-Ortega.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aguirre, C.A., Martins, Q.S. & Barba-Ortega, J. Superconducting 3D Multi-layer Sample Simulated Via Nonuniform Ginzburg–Landau Parameter. J Low Temp Phys 202, 360–371 (2021). https://doi.org/10.1007/s10909-020-02557-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-020-02557-5

Keywords

Navigation