Skip to main content
Log in

On modular firmly nonexpansive mappings in the variable exponent sequence spaces \(\ell _{p(\cdot )}\)

  • Published:
Journal of Fixed Point Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, we reexamine the concept of firmly nonexpansiveness in the modular sense in the variable exponent sequence spaces \(\ell _{p(\cdot )}\). In particular, we extend the classical fixed point results for firmly nonexpansive mappings defined in Banach spaces to the modular case within the spaces \(\ell _{p(\cdot )}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aoyama, K., Kimura, Y., Takahashi, W.: Maximal monotone operators and maximal monotone functions for equilibrium problems. J. Convex Anal. 15(2), 395–409 (2008)

    MathSciNet  MATH  Google Scholar 

  2. Ariza-Ruiz, D., López-Acedo, G., Martín-Márquez, V.: Firmly nonexpansive mappings. J. Nonlinear Convex A 15, 1–27 (2014)

    MathSciNet  MATH  Google Scholar 

  3. Bachar, M., Khamsi, M.A., Mendez, O., Bounkhel, M.: A geometric property in \(\ell _{p(\cdot )}\) and its applications. Math. Nachr. 292(9), 1931–1940 (2019)

    Article  MathSciNet  Google Scholar 

  4. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer, Berlin (2011)

    Book  Google Scholar 

  5. Bruck, R.E.: Nonexpansive projections on subsets of Banach spaces. Pac. J. Math. 47, 341–355 (1973)

    Article  MathSciNet  Google Scholar 

  6. Diening, L., Harjulehto, P., Hästö, P., Ruẑiĉka, M.: Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Note in Mathematics 2017. Springer, Berlin (2011)

    Book  Google Scholar 

  7. Goebel, K., Reich, S.: Uniform convexity, Hyperbolic Geometry, and Nonexpansive Mappings. Marcel Dekker, New York (1984)

    MATH  Google Scholar 

  8. Kaczor, W.: Fixed points of \(\lambda \)-firmly nonexpansive mappings on nonconvex sets. Nonlinear Anal. 47, 2787–2792 (2001)

    Article  MathSciNet  Google Scholar 

  9. Khamsi, M.A., Kirk, W.A.: An Introduction to Metric Spaces and Fixed Point Theory. Wiley, New York (2001)

    Book  Google Scholar 

  10. Khamsi, M.A., Kozlowski, W.M.: Fixed Point Theory in Modular Function Spaces. Birkhauser, New York (2015)

    Book  Google Scholar 

  11. Khamsi, M.A., Kozlowski, W.M., Reich, S.: Fixed point theory in modular functions spaces. Nonlinear Anal. 14, 935–953 (1990)

    Article  MathSciNet  Google Scholar 

  12. Khan, S.H.: Approximating fixed points of \((\lambda, \rho )\)-firmly nonexpansive mappings in modular function spaces. Arab. J. Math. 7, 281–287 (2018)

    Article  MathSciNet  Google Scholar 

  13. Klee, V.: Summability in \(\ell (p_{11}, p_{21}, \cdots )\) spaces. Stud. Math. 25, 277–280 (1965)

  14. Minty, G.J.: Monotone (nonlinear) operators in Hilbert space. Duke Math J. 29, 341–346 (1962)

    Article  MathSciNet  Google Scholar 

  15. Musielak, J.: Orlicz spaces and modular spaces. In: Lecture Notes in Mathematics, vol. 1034. Springer, Berlin (1983)

  16. Nakano, H.: Modulared Semi-Ordered Linear Spaces. Maruzen Co., Tokyo (1950)

    MATH  Google Scholar 

  17. Nakano, H.: Modulared sequence spaces. Proc. Jpn Acad. 27, 508–512 (1951a)

    Article  MathSciNet  Google Scholar 

  18. Nakano, H.: Topology of Linear Topological Spaces. Maruzen Co., Ltd., Tokyo (1951b)

    Google Scholar 

  19. Orlicz, W.: Über konjugierte Exponentenfolgen. Stud. Math. 3, 200–211 (1931)

  20. Rajagopal, K., Ružička, M.: On the modeling of electrorheological materials. Mech. Res. Commun. 23, 401–407 (1996)

    Article  Google Scholar 

  21. Reich, S.: Extension problems for accretive sets in Banach spaces. J. Funct. Anal. 26, 378–395 (1977)

    Article  MathSciNet  Google Scholar 

  22. Reich, S., Shafrir, I.: The asymptotic behavior of firmly nonexpansive mappings. Proc. Am. Math. Soc. 101, 246–250 (1987)

    Article  MathSciNet  Google Scholar 

  23. Ružička, M.: Electrorheological fluids: modeling and mathematical theory. In: Lecture Notes in Mathematics, vol. 1748. Springer, Berlin (2000)

  24. Smarzewski, R.: On firmly nonexpansive mappings. Proc. AMS 113(3), 723–725 (1991)

    Article  MathSciNet  Google Scholar 

  25. Sundaresan, K.: Uniform convexity of Banach spaces \(\ell (\{p_i\})\). Stud. Math. 39, 227–231 (1971)

    Article  Google Scholar 

  26. Waterman, D., Ito, T., Barber, F., Ratti, J.: Reflexivity and summability: the nakano \(\ell (p_i)\) spaces. Stud. Math. 331, 141–146 (1969)

    Article  Google Scholar 

Download references

Acknowledgements

This project was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under grant No. D-436-363-1441. The authors, therefore, gratefully acknowledge DSR technical and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Khamsi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdou, A.A.N., Khamsi, M.A. On modular firmly nonexpansive mappings in the variable exponent sequence spaces \(\ell _{p(\cdot )}\). J. Fixed Point Theory Appl. 23, 8 (2021). https://doi.org/10.1007/s11784-020-00842-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11784-020-00842-0

Keywords

Mathematics Subject Classification

Navigation