Skip to main content
Log in

Removal of per- and polyfluoroalkyl substances from aqueous media using synthesized silver nanocomposite-activated carbons

  • Research article
  • Published:
Journal of Environmental Health Science and Engineering Aims and scope Submit manuscript

Abstract

Purpose

Per- and polyfluoroalkyl substances (PFAS) have been found to be widespread, extremely persistent and bioaccumulative with toxicity tendencies. Pre-synthesized nanocomposite-activated carbons, referred to, as physically activated maize tassel silver (PAMTAg) and chemically activated maize tassel silver (CAMTAg) were utilized in the present study. They were used for the removal of 10 PFAS from aqueous solutions.

Methods

The nanocomposite-activated carbons were characterized via scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, Brunauer Emmett Teller (BET) and other techniques. Batch equilibrium experiments were conducted in order to investigate the effects of solution pH, adsorbent dosage, initial PFAS concentration and temperature on the removal of PFAS using PAMTAg and CAMTAg. Langmuir and Freundlich adsorption isotherm models were used to analyse the equilibrium data obtained.

Results

Maximum adsorption capacities of 454.1 mg/g (0.91 mmol/g) and 321.2 mg/g (0.78 mmol/g) were recorded for perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA), respectively using CAMTAg. The values recorded for the Gibbs’ free energy (ΔG°) for the adsorption of PFOS and PFOA onto PAMTAg and CAMTAg were negative; PFOS (−9.61, −9.99 and − 10.39), PFOA (−8.77, −9.76 and − 10.21) using PAMTAg; and PFOS (−13.70, −12.70 and − 12.37), PFOA (−12.86, −12.21 and − 11.17) using CAMTAg. Therefore, the adsorption processes were spontaneous and feasible. The values recorded for enthalpy (ΔH°) (kJ/mol) for the adsorption of PFOS (−26.15) and PFOA (−35.86) onto CAMTAg were negative, indicating that the adsorption mechanism is exothermic in nature. Positive values were recorded for ΔH° for the adsorption of PFOS (2.32) and PFOA (12.69) onto PAMTAg, indicative of an endothermic adsorption mechanism. Positive entropy (ΔS°) values (0.04 and 0.07) were recorded for PFOS and PFOA using PAMTAg; whereas negative values (−0.04 and − 0.08) were recorded for ΔS° using CAMTAg. A positive ΔS° indicates an increase in randomness of the adsorbate at the solid-solution interface and the reverse is the case for a negative ΔS°.

Conclusion

The interplay of electrostatic attraction and hydrophobic interactions enabled the removal of PFAS using PAMTAg and CAMTAg. Findings suggest that PAMTAg and CAMTAg are effective for the removal of PFAS from aqueous media and are good alternatives to commercially available activated carbons.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data that are closely related to the present study showing the effects of pH, adsorption dosage and initial PFAS concentration on the adsorption mechanism of PFAS using inactivated maize tassel powder have been reviewed and stored in the Mendeley Data Repository. Data are available at; https://data.mendeley.com/datasets/ykb39rn322/1

References

  1. Takagi S, Adachi F, Miyano K, Koizumi Y, Tanaka H, Mimura M, et al. Perfluorooctanesulfonate and perfluorooctanoate in raw and treated tap water from Osaka. Jpn Chemosphere. 2008;72:1409–12. https://doi.org/10.1016/j.chemosphere.2008.05.034.

    Article  CAS  Google Scholar 

  2. Idris AO, Oseghe EO, Msagati TA, Kuvarega AT, Feleni U, Mamba B. Graphitic carbon nitride: a highly electroactive nanomaterial for environmental and clinical sensing. Sensors. 2020;20(20):5743. https://doi.org/10.3390/s20205743.

    Article  CAS  Google Scholar 

  3. Rahman MF, Peldszus S, Anderson WB. Behaviour and fate of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in drinking water treatment: a review. Water Res. 2014;50:318–40. https://doi.org/10.1016/j.watres.2013.10.045.

    Article  CAS  Google Scholar 

  4. Omo-Okoro PN, Daso AP, Okonkwo JO. A review of the application of agricultural wastes as precursor materials for the adsorption of per-and polyfluoroalkyl substances: a focus on current approaches and methodologies. Environ Technol Innov. 2018a;9:100–14. https://doi.org/10.1016/j.eti.2017.11.005.

    Article  Google Scholar 

  5. Mudumbi J, Ntwampe S, Muganza F, Okonkwo J. Perfluorooctanoate and perfluorooctane sulfonate in South African river water. Water Sci Technol. 2014;69(1):185–94. https://doi.org/10.2166/wst.2013.566.

    Article  CAS  Google Scholar 

  6. Appleman TD, Higgins CP, Quiñones O, Vanderford BJ, Kolstad C, Zeigler-Holady JC, et al. Treatment of poly-and perfluoroalkyl substances in US full-scale water treatment systems. Water Res. 2014;51:246–55. https://doi.org/10.1016/j.watres.2013.10.067.

    Article  CAS  Google Scholar 

  7. Flores C, Ventura F, Martin-Alonso J, Caixach J. Occurrence of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in NE Spanish surface waters and their removal in a drinking water treatment plant that combines conventional and advanced treatments in parallel lines. Sci Total Environ. 2013;461:618–26. https://doi.org/10.1016/j.scitotenv.2013.05.026.

    Article  CAS  Google Scholar 

  8. Banzhaf S, Filipovic M, Lewis J, Sparrenbom CJ, Barthel R. A review of contamination of surface-, ground-, and drinking water in Sweden by perfluoroalkyl and polyfluoroalkyl substances (PFASs). Ambio. 2017;46:335–46. https://doi.org/10.1007/s13280-016-0848-8.

    Article  CAS  Google Scholar 

  9. Post GB, Louis JB, Lippincott RL, Procopio NA. Occurrence of perfluorinated compounds in raw water from New Jersey public drinking water systems. Environ Sci Technol. 2013;47(23):13266–75. https://doi.org/10.1021/es402884x.

    Article  CAS  Google Scholar 

  10. Post GB, Louis JB, Cooper KR, Boros-Russo BJ, Lippincott RL. Occurrence and potential significance of perfluorooctanoic acid (PFOA) detected in New Jersey public drinking water systems. Environ Sci Technol. 2009;43(12):4547–54. https://doi.org/10.1021/es900301.

    Article  CAS  Google Scholar 

  11. Benford D, De Boer J, Carere A, Di Domenico A, Johansson N, Schrenk D, et al. Opinion of the scientific panel on contaminants in the food chain on perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA) and their salts. EFSA J. 2008:1–131. https://hdl.handle.net/11245/1.293305. Accessed 6 Apr 2020.

  12. Joensen UN, Bossi R, Leffers H, Jensen AA, Skakkebæk NE, Jørgensen N. Do perfluoroalkyl compounds impair human semen quality? Environ Health Perspect. 2009;117:923–7. https://doi.org/10.1289/ehp.0800517.

    Article  CAS  Google Scholar 

  13. Wang F, Liu C, Shih K. Adsorption behavior of perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) on boehmite. Chemosphere. 2012;89:1009–14. https://doi.org/10.1016/j.chemosphere.2012.06.071.

    Article  CAS  Google Scholar 

  14. Du Plessis, J. Maize production. Department of Agriculture Pretoria, South Africa. 2003

  15. Adisa OM, Botai CM, Botai JO, Hassen A, Darkey D, Tesfamariam E, et al. Analysis of agro-climatic parameters and their influence on maize production in South Africa. Theor Appl Climatol. 2018;134(3–4):991–1004. https://doi.org/10.1007/s00704-017-2327-y.

    Article  Google Scholar 

  16. CEC. 2020. South African Crop Estimates Committee (CEC). www.sagis.org.za/CEC. Accessed 10 Oct 2020.

  17. Olorundare O, Krause R, Okonkwo J, Mamba B. Potential application of activated carbon from maize tassel for the removal of heavy metals in water. Phys Chem Earth Parts A/B/C. 2012;50:104–10. https://doi.org/10.1016/j.pce.2012.06.001.

    Article  Google Scholar 

  18. Zvinowanda CM, Okonkwo JO, Sekhula MM, Agyei NM, Sadiku R. Application of maize tassel for the removal of Pb, se, Sr, U and V from borehole water contaminated with mine wastewater in the presence of alkaline metals. J Hazard Mater. 2009b;164:884–91. https://doi.org/10.1016/j.jhazmat.2008.08.110.

    Article  CAS  Google Scholar 

  19. Majdalawieh A, Kanan MC, El-Kadri O, Kanan SM. Recent advances in gold and silver nanoparticles: synthesis and applications. J Nanosci Nanotechnol. 2014;14(7):4757–80. https://doi.org/10.1166/jnn.2014.9526.

    Article  CAS  Google Scholar 

  20. Pradeep T. Noble metal nanoparticles for water purification: a critical review. Thin Solid Films. 2009;517(24):6441–78. https://doi.org/10.1016/j.tsf.2009.03.195.

    Article  CAS  Google Scholar 

  21. Esakkimuthu T, Sivakumar D, Akila S. Application of nanoparticles in wastewater treatment. Pollut Res. 2014;33(03):567–71.

    CAS  Google Scholar 

  22. Kim B, Park CS, Murayama M, Hochella MF Jr. Discovery and characterization of silver sulfide nanoparticles in final sewage sludge products. Environ Sci Technol. 2010;44(19):7509–14. https://doi.org/10.1021/es101565j.

    Article  CAS  Google Scholar 

  23. Nowack B, Krug HF, Height M. 120 years of nanosilver history: implications for policy makers. ACS Publ. 2011;45(4):1177–83. https://doi.org/10.1021/es103316q.

    Article  CAS  Google Scholar 

  24. Olgun U, Tunç K, Hoş A. Preparation and antibacterial properties of nano biocomposite poly (ε-caprolactone)-SiO 2 films with nanosilver. J Polym Res. 2019;26(2):24. https://doi.org/10.1007/s10965-018-1686-0.

    Article  CAS  Google Scholar 

  25. Amin M, Alazba A, Manzoor U. A review of removal of pollutants from water/wastewater using different types of nanomaterials. Adv Mater Sci Eng. 2014; Article ID 825910: 24pp. https://doi.org/10.1155/2014/825910

  26. Reidy B, Haase A, Luch A, Dawson KA, Lynch I. Mechanisms of silver nanoparticle release, transformation and toxicity: a critical review of current knowledge and recommendations for future studies and applications. Materials. 2013;6(6):2295–350. https://doi.org/10.3390/ma6062295.

    Article  CAS  Google Scholar 

  27. Motshekga SC, Ray SS, Onyango MS, Momba MN. Microwave-assisted synthesis, characterization and antibacterial activity of Ag/ZnO nanoparticles supported bentonite clay. J Hazard Mater. 2013;262:439–46. https://doi.org/10.1016/j.jhazmat.2013.08.074.

    Article  CAS  Google Scholar 

  28. Pourmand M, Shahidi K, Nazari P, Moosavian SM, Samadi N, Pourmand G, et al. The different antibacterial impact of silver nanoparticles against legionella pneumophila compared to other microorganisms. J Sci Islam Repub Iran. 2013;24(4):313–9.

    Google Scholar 

  29. Qu Y, Zhang C, Li F, Bo X, Liu G, Zhou Q. Equilibrium and kinetics study on the adsorption of perfluorooctanoic acid from aqueous solution onto powdered activated carbon. J Hazard Mater. 2009;169:146–52. https://doi.org/10.1016/j.jhazmat.2009.03.063.

    Article  CAS  Google Scholar 

  30. BhatnagarA VVJ, Botelho CM, Boaventura RA. Coconut-based biosorbents for water treatment—a review of the recent literature. Adv. Colloid Interface Sci. 2010;160(1):1–15. https://doi.org/10.1016/j.cis.2010.06.011.

    Article  CAS  Google Scholar 

  31. Yu Q, Zhang R, Deng S, Huang J, Yu G. Sorption of perfluorooctane sulfonate and perfluorooctanoate on activated carbons and resin: kinetic and isotherm study. Water Res. 2009;43:1150–8. https://doi.org/10.1016/j.watres.2008.12.001.

    Article  CAS  Google Scholar 

  32. Kucharzyk KH, Darlington R, Benotti M, Deeb R, Hawley E. Novel treatment technologies for PFAS compounds: a critical review. J Environ Manag. 2017;204:757–64. https://doi.org/10.1016/j.jenvman.2017.08.016.

    Article  CAS  Google Scholar 

  33. Pal J, Deb MK, Deshmukh DK, Verma D. Removal of methyl orange by activated carbon modified by silver nanoparticles. Appl Water Sci. 2013;3(2):367–74. https://doi.org/10.1007/s13201-013-0087-0.

    Article  CAS  Google Scholar 

  34. Goldstein N, Greenlee LF. Influence of synthesis parameters on iron nanoparticle size and zeta potential. J Nanopart Res. 2012;14(4):760. https://doi.org/10.1007/s11051-012-0760-5.

    Article  CAS  Google Scholar 

  35. Igwegbe C, Rahdar S, Rahdar A, Mahvi A, Ahmadi S, Banach A. Removal of fluoride from aqueous solution by Nikel oxide nanoparticles: equilibrium and kinetic studies. Fluoride. 2019;52(4):569–79.

    CAS  Google Scholar 

  36. Ahmadi S, Igwegbe CA. Removal of methylene blue on zinc oxide nanoparticles: Nonlinear and linear adsorption isotherms and kinetics study. Sigma: J Eng Nat Sci/Mühendislik ve Fen Bilimleri Derg. 2020; 38(1).

  37. Igwegbe CA, Onukwuli OD, Ighalo JO, Okoye PU. Adsorption of cationic dyes on Dacryodes edulis seeds activated carbon modified using phosphoric acid and sodium chloride. Environ Process. 2020;7:1–21. https://doi.org/10.1007/s40710-020-00467-y.

    Article  CAS  Google Scholar 

  38. Qu X, Alvarez PJ, Li Q. Applications of nanotechnology in water and wastewater treatment. Water Res. 2013;47(12):3931–46. https://doi.org/10.1016/j.watres.2012.09.058.

    Article  CAS  Google Scholar 

  39. Zhang W, Zhang D, Liang Y. Nanotechnology in remediation of water contaminated by poly-and perfluoroalkyl substances: a review. Environ Pollut. 2019;247:266–76. https://doi.org/10.1016/j.envpol.2019.01.045.

    Article  CAS  Google Scholar 

  40. Srivastava V, Zare EN, Makvandi P, Zheng XQ, Iftekhar S, Wu A, Padil VV, Mokhtari B, Varma RS, Tay FR. Cytotoxic aquatic pollutants and their removal by nanocomposite-based sorbents. Chemosphere. 2020; 127324. https://doi.org/10.1016/j.chemosphere.2020.127324

  41. Pan B, Xing B. Adsorption mechanisms of organic chemicals on carbon nanotubes. Environ Sci Technol. 2008;42(24):9005–13. https://doi.org/10.1021/es801777n.

    Article  CAS  Google Scholar 

  42. Tuan TQ, Van Son N, Dung HT, Luong NH, Thuy BT, Van Anh N, et al. Preparation and properties of silver nanoparticles loaded in activated carbon for biological and environmental applications. J Hazard Mater. 2011;192(3):1321–9. https://doi.org/10.1016/j.jhazmat.2011.06.044.

    Article  CAS  Google Scholar 

  43. Ghaedi M, Sadeghian B, Pebdani AA, Sahraei R, Daneshfar A, Duran C. Kinetics, thermodynamics and equilibrium evaluation of direct yellow 12 removal by adsorption onto silver nanoparticles loaded activated carbon. Chem Eng J. 2012;187:133–41. https://doi.org/10.1016/j.cej.2012.01.111.

    Article  CAS  Google Scholar 

  44. Ochoa-Herrera V, Sierra-Alvarez R. Removal of perfluorinated surfactants by sorption onto granular activated carbon, zeolite and sludge. Chemosphere. 2008;72(10):1588–93. https://doi.org/10.1016/j.chemosphere.2008.04.029.

    Article  CAS  Google Scholar 

  45. Chen X, Xia X, Wang X, Qiao J, Chen H. A comparative study on sorption of perfluorooctane sulfonate (PFOS) by chars, ash and carbon nanotubes. Chemosphere. 2011;83:1313–9. https://doi.org/10.1016/j.chemosphere.2011.04.018.

    Article  CAS  Google Scholar 

  46. Oyetade OA, Varadwaj GBB, Nyamori VO, Jonnalagadda SB, Martincigh BS. A critical review of the occurrence of perfluoroalkyl acids in aqueous environments and their removal by adsorption onto carbon nanotubes. Rev Environ Sci Biotechnol. 2018;17(4):603–35. https://doi.org/10.1007/s11157-018-9479-9.

    Article  CAS  Google Scholar 

  47. Fisal A, Daud WMAW, Ahmad MA, Radzi R. Using cocoa (Theobroma cacao) shell-based activated carbon to remove 4-nitrophenol from aqueous solution: kinetics and equilibrium studies. Chem Eng J. 2011;178:461–7. https://doi.org/10.1016/j.cej.2011.10.044.

    Article  CAS  Google Scholar 

  48. Akl MA, Dawy MB, Serage AA. Efficient removal of phenol from water samples using sugarcane bagasse based activated carbon. J Anal Bioanal Tech. 2014;5:2. https://doi.org/10.4172/2155-9872.1000189.

    Article  CAS  Google Scholar 

  49. Fernandez ME, Nunell GV, Bonelli PR, Cukierman AL. Activated carbon developed from orange peels: batch and dynamic competitive adsorption of basic dyes. Ind Crop Prod. 2014;62:437–45. https://doi.org/10.1016/j.indcrop.2014.09.015.

    Article  CAS  Google Scholar 

  50. Chang KL, Hsieh JF, Ou BM, Chang MH, Hseih WY, Lin JH. Adsorption studies on the removal of an endocrine-disrupting compound (Bisphenol a) using activated carbon from rice straw agricultural waste. Sep Sci Technol. 2012;47(10):1514–21. https://doi.org/10.1080/01496395.2011.647212.

    Article  CAS  Google Scholar 

  51. Malik PK. Use of activated carbons prepared from sawdust and rice-husk for adsorption of acid dyes: a case study of acid yellow 36. Dyes Pigments. 2003;56(3):239–49. https://doi.org/10.1016/S0143-7208(02)00159-6.

    Article  CAS  Google Scholar 

  52. Zhong ZY, Yang Q, Li XM, Luo K, Liu Y, Zeng GM. Preparation of peanut hull-based activated carbon by microwave-induced phosphoric acid activation and its application in Remazol brilliant blue R adsorption. Ind Crop Prod. 2012;37(1):178–85. https://doi.org/10.1016/j.indcrop.2011.12.015.

    Article  CAS  Google Scholar 

  53. Nwadiogbu J, Ajiwe V, Okoye P. Removal of crude oil from aqueous medium by sorption on hydrophobic corncobs: Equilibrium and kinetic studies. J Taibah Univ Sci. 2016;10(1):56–63. https://doi.org/10.1016/j.jtusci.2015.03.014.

  54. Sud D, Mahajan G, Kaur M. Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions–a review. Bioresour Technol. 2008;99(14):6017–27. https://doi.org/10.1016/j.biortech.2007.11.064.

  55. Wahi R, Chuah LA, Choong TS, Ngaini Z, Nourouzi MM. Oil removal from aqueous state by natural fibrous sorbent: an overview. Sep Purif Technol. 2013;113:51–63. https://doi.org/10.1016/j.seppur.2013.04.015.

  56. Fagbayigbo BO, Opeolu BO, Fatoki OS, Akenga TA, Olatunji OS. Removal of PFOA and PFOS from aqueous solutions using activated carbon produced from Vitis vinifera leaf litter. Environ Sci Pollut Res. 2017;24:13107–20. https://doi.org/10.1007/s11356-017-8912-x.

    Article  CAS  Google Scholar 

  57. Deng S, Niu L, Bei Y, Wang B, Huang J, Yu G. Adsorption of perfluorinated compounds on aminated rice husk prepared by atom transfer radical polymerization. Chemosphere. 2013;91:124–30. https://doi.org/10.1016/j.chemosphere.2012.11.015.

    Article  CAS  Google Scholar 

  58. Deng S, Nie Y, Du Z, Huang Q, Meng P, Wang B, et al. Enhanced adsorption of perfluorooctane sulfonate and perfluorooctanoate by bamboo-derived granular activated carbon. J Hazard Mater. 2015;282:150–7. https://doi.org/10.1016/j.jhazmat.2014.03.045.

    Article  CAS  Google Scholar 

  59. Liu L, Liu Y, Gao B, Ji R, Li C, Wang S. Removal of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) from water by carbonaceous nanomaterials: a review. Crit Rev Environ Sci Technol. 2020;50(22):2379–414. https://doi.org/10.1080/10643389.2019.1700751.

    Article  CAS  Google Scholar 

  60. Basta AH, Lotfy VF, Hasanin MS, Trens P, El-Saied H. Efficient treatment of rice byproducts for preparing high-performance activated carbons. J Clean Prod. 2019;207:284–95. https://doi.org/10.1016/j.jclepro.2018.09.216.

    Article  CAS  Google Scholar 

  61. Mohan AN, Manoj B, Panicker S. Facile synthesis of graphene-tin oxide nanocomposite derived from agricultural waste for enhanced antibacterial activity against Pseudomonas aeruginosa. Sci Rep. 2019;9(1):1–12. https://doi.org/10.1038/s41598-019-40916-9.

    Article  CAS  Google Scholar 

  62. Omo-Okoro PN, Maepa CE, Daso AP, Okonkwo JO. Microwave-assisted synthesis and characterization of an agriculturally derived silver nanocomposite and its derivatives. Waste Biomass Valorization. 2020a;11:2247–59. https://doi.org/10.1007/s12649-018-0523-3.

    Article  CAS  Google Scholar 

  63. Omo-Okoro PN, Curtis CJ, Karásková P, Melymuk L, Oyewo OA, Okonkwo JO. Kinetics, isotherm, and thermodynamic studies of the adsorption mechanism of PFOS and PFOA using inactivated and chemically activated maize tassel. Water Air Soil Pollut. 2020b;231(9):1–21. https://doi.org/10.1007/s11270-020-04852-z.

    Article  CAS  Google Scholar 

  64. Exner M, Färber H. Perfluorinated surfactants in surface and drinking waters. Environ Sci Pollut Res. 2006;13:299–307. https://doi.org/10.1065/espr2006.07.326.

    Article  CAS  Google Scholar 

  65. Rumsby PC, Mclaughlin CL, Hall T. Perfluorooctane sulphonate and perfluorooctanoic acid in drinking and environmental waters. Philos Trans R Soc A Math Phys Eng Sci. 2009;367:4119–36. https://doi.org/10.1098/rsta.2009.0109.

    Article  CAS  Google Scholar 

  66. Djerahov L, Vasileva P, Karadjova I, Kurakalva RM, Aradhi KK. Chitosan film loaded with silver nanoparticles—sorbent for solid phase extraction of Al (III), cd (II), cu (II), co (II), Fe (III), Ni (II), Pb (II) and Zn (II). Carbohydr Polym. 2016;147:45–52. https://doi.org/10.1016/j.carbpol.2016.03.080.

    Article  CAS  Google Scholar 

  67. Regiel A, Irusta S, Kyzioł A, Arruebo M, Santamaria J. Preparation and characterization of chitosan–silver nanocomposite films and their antibacterial activity against Staphylococcus aureus. Nanotechnology. 2012;24(1):015101.

    Article  Google Scholar 

  68. Ahmad MB, Tay MY, Shameli K, Hussein MZ, Lim JJ. Green synthesis and characterization of silver/chitosan/polyethylene glycol nanocomposites without any reducing agent. Int J Mol Sci. 2011;12(8):4872–84. https://doi.org/10.3390/ijms12084872.

    Article  CAS  Google Scholar 

  69. Zhang Y, Gao X, Zhi L, Liu X, Jiang W, Sun Y, et al. The synergetic antibacterial activity of Ag islands on ZnO (Ag/ZnO) heterostructure nanoparticles and its mode of action. J Inorg Biochem. 2014;130:74–83. https://doi.org/10.1016/j.jinorgbio.2013.10.004.

    Article  CAS  Google Scholar 

  70. Londoño-Restrepo SM, Jeronimo-Cruz R, Millán-Malo BM, Rivera-Muñoz EM, Rodriguez-García ME. Effect of the nano crystal size on the X-ray diffraction patterns of biogenic hydroxyapatite from human, bovine, and porcine bones. Sci Rep. 2019;9(1):1–12. https://doi.org/10.1038/s41598-019-42269-9.

    Article  CAS  Google Scholar 

  71. Holder CF, Schaak RE. Tutorial on powder X-ray diffraction for characterizing nanoscale materials. ACS Publ. 2019;13:7359–65. https://doi.org/10.1021/acsnano.9b05157.

    Article  CAS  Google Scholar 

  72. Buso D, Pacifico J, Martucci A, Mulvaney P. Gold-nanoparticle-doped TiO2 semiconductor thin films: optical characterization. Adv Funct Mater. 2007;17(3):347–54. https://doi.org/10.1002/adfm.200600349.

    Article  CAS  Google Scholar 

  73. Ruggiero I, Terracciano M, Martucci NM, De Stefano L, Migliaccio N, Tatè R, et al. Diatomite silica nanoparticles for drug delivery. Nanoscale Res Lett. 2014;9(1):1–7. https://doi.org/10.1186/1556-276X-9-329.

    Article  CAS  Google Scholar 

  74. Abreu AS, Oliveira M, de Sá A, Rodrigues RM, Cerqueira MA, Vicente AA, et al. Antimicrobial nanostructured starch based films for packaging. Carbohydr Polym. 2015;129:127–34. https://doi.org/10.1016/j.carbpol.2015.04.021.

    Article  CAS  Google Scholar 

  75. Li SM, Jia N, Ma MG, Zhang Z, Liu QH, Sun RC. Cellulose–silver nanocomposites: microwave-assisted synthesis, characterization, their thermal stability, and antimicrobial property. Carbohydr Polym. 2011;86(2):441–7. https://doi.org/10.1016/j.carbpol.2011.04.060.

    Article  CAS  Google Scholar 

  76. Oyewo O, Onyango M, Wolkersdorfer C. Lanthanides removal from mine water using banana peels nanosorbent. Int J Environ Sci Technol. 2018;15:1265–74. https://doi.org/10.1007/s13762-017-1494-9.

    Article  CAS  Google Scholar 

  77. Zvinowanda C, Okonkwo J, Shabalala P, Agyei N. A novel adsorbent for heavy metal remediation in aqueous environments. Int J Environ Sci Technol. 2009a;6:425–34. https://doi.org/10.1007/BF03326081.

    Article  CAS  Google Scholar 

  78. Guo J, Lua AC. Characterization of adsorbent prepared from oil-palm shell by CO2 activation for removal of gaseous pollutants. Mater Lett. 2002;55:334–9. https://doi.org/10.1016/S0167-577X(02)00388-9.

    Article  CAS  Google Scholar 

  79. Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report). Pure Appl Chem. 2015;87(9–10):1051–69. https://doi.org/10.1515/pac-2014-1117.

    Article  CAS  Google Scholar 

  80. Baccar R, Sarrà M, Bouzid J, Feki M, Blánquez P. Removal of pharmaceutical compounds by activated carbon prepared from agricultural by-product. Chem Eng J. 2012;211:310–7. https://doi.org/10.1016/j.cej.2012.09.099.

    Article  CAS  Google Scholar 

  81. Omo-Okoro PN, Daso AP, Okonkwo JO. Per- and Polyfluoroalkyl substances: ubiquity, levels, toxicity and their removal from aqueous media using novel agro-based adsorbents. Organohalogen Compd. 2018b;80:309–12 http://dioxin20xx.org/organohalogen-compounds-database-search/. Accessed 10 Mar 2020.

  82. Wang N, Liu J, Buck RC, Korzeniowski SH, Wolstenholme BW, Folsom PW, et al. 6: 2 Fluorotelomer sulfonate aerobic biotransformation in activated sludge of waste water treatment plants. Chemosphere. 2011;82:853–8. https://doi.org/10.1016/j.chemosphere.2010.11.003.

    Article  CAS  Google Scholar 

  83. Guo W, Huo S, Feng J, Lu X. Adsorption of perfluorooctane sulfonate (PFOS) on corn straw-derived biochar prepared at different pyrolytic temperatures. J Taiwan Inst Chem Eng. 2017;78:265–71. https://doi.org/10.1016/j.jtice.2017.06.013.

    Article  CAS  Google Scholar 

  84. Kumar N, Mittal H, Parashar V, Ray SS, Ngila JC. Efficient removal of rhodamine 6G dye from aqueous solution using nickel sulphide incorporated polyacrylamide grafted gum karaya bionanocomposite hydrogel. RSC Adv. 2016;6:21929–39. https://doi.org/10.1039/C5RA24299A.

    Article  CAS  Google Scholar 

  85. Oyewo OA, Onyango MS, Wolkersdorfer C. Application of banana peels nanosorbent for the removal of radioactive minerals from real mine water. J Environ Radioact. 2016;164:369–76. https://doi.org/10.1016/j.jenvrad.2016.08.014.

    Article  CAS  Google Scholar 

  86. Mekonnen E, Yitbarek M, Soreta TR. Kinetic and thermodynamic studies of the adsorption of Cr (VI) onto some selected local adsorbents. S Afr J Chem. 2015;68:45–52. https://doi.org/10.17159/0379-4350/2015/v68a7.

    Article  CAS  Google Scholar 

  87. Piccin J, Dotto G, Pinto L. Adsorption isotherms and thermochemical data of FD&C red n 40 binding by chitosan. Braz J Chem Eng. 2011;28:295–304.

    Article  CAS  Google Scholar 

  88. Al-Anber MA. Thermodynamics approach in the adsorption of heavy metals. Thermodynamics-Interaction Studies-Solids, Liquids and Gases. InTech; 2011. 30 pp.

  89. Dada A, Olalekan A, Olatunya A, Dada O. Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherms studies of equilibrium sorption of Zn2+ unto phosphoric acid modified rice husk. IOSR J Appl Chem. 2012;3(1):38–45.

    Article  Google Scholar 

  90. He J, Hong S, Zhang L, Gan F, Ho Y. Equilibrium and thermodynamic parameters of adsorption of methylene blue onto rectorite. Fresenius Environ Bull. 2010;19:2651–6.

    CAS  Google Scholar 

  91. Sharma PK, Ayub S, Tripathi CN. Isotherms describing physical adsorption of Cr (VI) from aqueous solution using various agricultural wastes as adsorbents. Cogent Eng. 2016;3(1):1186857. https://doi.org/10.1080/23311916.2016.1186857.

    Article  Google Scholar 

  92. Aziz HA, Yusoff MS, Adlan MN, Adnan NH, Alias S. Physico-chemical removal of iron from semi-aerobic landfill leachate by limestone filter. Waste Manag. 2004;24:353–8. https://doi.org/10.1016/j.wasman.2003.10.006.

    Article  CAS  Google Scholar 

  93. Ismail M, Weng CN, Rahman HA, Zakaria NA. Freundlich isotherm equilibrium equations in determining effectiveness of a low cost absorbent to heavy metal removal in wastewater (leachate) at Teluk Kitang landfill, Pengkalan Chepa, Kelantan, Malaysia. J Geogr Earth Sci. 2013;1:1–8.

    Google Scholar 

  94. Arsénio de Sá AS, Moura I, Machado AV. Polymeric materials for metal sorption from hydric resources, In Water Purification, Academic Press. 2017; 289–322. https://doi.org/10.1016/B978-0-12-804300-4.00008-3

  95. Equilibria. Adsorption Equilbrium Principles [Online]. Marmara University, Turkey. 2017, 29 pp. available: http://mimoza.marmara.edu.tr/~zehra.can/ENVE401/3.%20Adsorption%20Equilibria.pdf. Accessed 6 Dec 2019.

  96. Kumar U, Bandyopadhyay M. Sorption of cadmium from aqueous solution using pretreated rice husk. Bioresour Technol. 2006;97:104–9. https://doi.org/10.1016/j.biortech.2005.02.027.

    Article  CAS  Google Scholar 

  97. Bansal G. What does coefficient of determination explain? (In terms of variation). University of Wisconsin. 2020. https://blog.uwgb.edu/bansalg/statistics-data-analytics/linear-regression/what-does-coefficient-of-determination-explain-in-terms-of-variation/ Accessed 5 Feb 2020.

  98. Ratner B. The correlation coefficient: its values range between +1/−1, or do they? J Target Meas Anal Mark. 2009;17:139–42. https://doi.org/10.1057/jt.2009.5.

    Article  Google Scholar 

  99. Ahmad MA, Puad NA, Bello OS. Kinetic, equilibrium and thermodynamic studies of synthetic dye removal using pomegranate peel activated carbon prepared by microwave-induced KOH activation. Water Resour Ind. 2014;6:18–35. https://doi.org/10.1016/j.wri.2014.06.002.

    Article  Google Scholar 

  100. Adane B, Siraj K, Meka N. Kinetic, equilibrium and thermodynamic study of 2-chlorophenol adsorption onto Ricinus communis pericarp activated carbon from aqueous solutions. Green Chem Lett Rev. 2015;8:1–12. https://doi.org/10.1080/17518253.2015.1065348.

    Article  CAS  Google Scholar 

  101. Hamad BK, Noor AM, Rahim AA. Removal of 4-chloro-2-methoxyphenol from aqueous solution by adsorption to oil palm shell activated carbon activated with K2CO3. J Phys Sci. 2011;22:39–55. https://doi.org/10.1016/j.jaubas.2015.09.001.

    Article  CAS  Google Scholar 

  102. Khan MN, Wahab MF. Characterization of chemically modified corncobs and its application in the removal of metal ions from aqueous solution. J Hazard Mater. 2007;141(1):237–44. https://doi.org/10.1016/j.jhazmat.2006.06.119.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan O. Okonkwo.

Ethics declarations

Conflict of interest

There are no competing interests to be declared by the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Electrostatic attraction is involved in the adsorption of PFAS in the present study

• Hydrophobic interaction also plays a significant role in the adsorption of PFAS

• Maximum adsorption capacities were recorded using CAMTAg

• The Freundlich model suits the isotherm data better than the Langmuir model

Supplementary Information

ESM 1

(PDF 162 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Omo-Okoro, P.N., Curtis, C.J., Marco, A.M. et al. Removal of per- and polyfluoroalkyl substances from aqueous media using synthesized silver nanocomposite-activated carbons. J Environ Health Sci Engineer 19, 217–236 (2021). https://doi.org/10.1007/s40201-020-00597-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40201-020-00597-3

Keywords

Navigation