Skip to main content
Log in

DFT calculations on ZnO1−x compounds for optoelectronic applications

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

The \({\text{ZnO}}_{{1 - {\text{x}}}}\) compounds were studied theoretically using the full-potential linearized augmented plane wave (FP-LAPW) method in the modified Becke–Johnson (mBJ) technique. The TB-mBJ scheme yields accurate description of the ground state properties better than PBE-GGA approximation. The site preference and the relative stability of the defects in the \({\text{ZnO}}_{{1 - {\text{x}}}}\) compounds were studied in detail. The effect of oxygen defects on structural, compressive parameters, electronic structure and optical properties of zinc oxide was examined. The X-ray absorption (XAS) and emission (XES) spectra of the O K-edge were investigated to explore the electronic structures of \({\text{ZnO}}_{{1 - {\text{x}}}}\) compounds. The dielectric functions, absorption, reflectivity, energy loss function and optical conductivity spectra of \({\text{ZnO}}_{{1 - {\text{x}}}}\) compounds were evaluated and analyzed in detail. This study shows a significant rising in optical conductivity in the visible range, and consequently, \({\text{ZnO}}_{{1 - {\text{x}}}}\) compounds lead a way to the realization of photodetectors more sensitive in the visible region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Sedky, A., Amin, S.A., Mohamed, M.: Electrical, photoluminescence and ferromagnetic characterization of pure and doped ZnO nanostructures. Appl. Phys. Mater. Sci. Process. 125, 308 (2019)

    Article  Google Scholar 

  2. Ouerghui, W., Alkhalifah, M.S.: Density functional investigation of structural, electronic, optical and thermodynamic properties of Zn 1− x Be x O semiconductor. Appl. Phys. A Mater. Sci. Process. 125, 374 (2019)

    Article  Google Scholar 

  3. Zhang, J., Lu, J., Lu, Y., Yue, S., Lu, R., Li, X., Zhang, J., Ye, Z.: Dependence of device behaviours on oxygen vacancies in ZnSnO thin film transistors. Appl. Phys. A Mater. Sci. Process. 125, 362 (2019)

    Article  Google Scholar 

  4. Sandeep, K.M., Bhat, S., Dharmaprakash, S.M.: Structural defects and photoluminescence studies of sol–gel prepared ZnO and Al-doped ZnO films. Appl. Phys. A Mater. Sci. Process. 122, 975 (2016)

    Article  Google Scholar 

  5. Boonchun, A., Lambrecht, W.R.L.: Electronic structure of defects and doping in ZnO: oxygen vacancy and nitrogen doping. Phys. Status Solidi B. 250, 2091 (2013)

    Article  Google Scholar 

  6. Buckeridge, J., Catlow, C.R.A., Farrow, M.R., Logsdail, A.J., Scanlon, D.O., Keal, T.W., Sherwood, P., Woodley, S.M., Sokol, A.A., Walsh, A.: Deep vs shallow nature of oxygen vacancies and consequent n-type carrier concentrations in transparent conducting oxides. Phys. Rev. Mater. 2, 054604 (2018)

    Article  Google Scholar 

  7. Mishra, V., Warshi, M.K., Sati, A., Kumar, A., Mishra, V., Sagdeo, A., Kumar, R., Sagdeo, P.R.: Diffuse reflectance spectroscopy: an effective tool to probe the defect states in wide band gap semiconducting materials. Mater. Sci. Semicond. Process. 86, 151 (2018)

    Article  Google Scholar 

  8. Frodason, Y.K., Johansen, K.M., Bjørheim, T.S., Svensson, B.G., Alkauskas, A.: Zn vacancy-donor impurity complexes in zno. Phys. Rev. B. 97, 104109 (2018)

    Article  Google Scholar 

  9. Wang, Z., Luo, C., Anwand, W., Wagner, A., Butterling, M., Rahman, M.A., Phillips, M.R., Ton-That, C., Younas, M., Su, S., Ling, F.C.C.: Vacancy cluster in ZnO films grown by pulsed laser deposition. Sci. Rep. 9, 3534 (2019)

    Article  Google Scholar 

  10. Wang, Y., Piao, J., Xing, G., Lu, Y., Ao, Z., Bao, N., Ding, J., Li, S., Yi, J.: Zn vacancy induced ferromagnetism in K doped ZnO. J. Mater. Chem. C. 3, 11953 (2015)

    Article  Google Scholar 

  11. Zhang, Q., Xu, M., You, B., Zhang, Q., Yuan, H., Ostrikov, K.: Oxygen vacancy-mediated ZnO nanoparticle photocatalyst for degradation of methylene blue. Appl. Sci. 8, 353 (2018)

    Article  Google Scholar 

  12. Kabir, A., Bouanane, I., Boulainine, D., Zerkout, S., Schmerber, G., Boudjema, B.: Photoluminescence study of deep level defects in ZnO thin films. Silicon. 11, 837 (2019)

    Article  Google Scholar 

  13. Ma, Y., Du, G.T., Yang, S.R., Li, Z.T., Zhao, B.J., Yang, X.T., Yang, T.P., Zhang, Y.T., Liu, D.L.: Control of conductivity type in undoped ZnO thin films grown by metalorganic vapor phase epitaxy. J. Appl. Phys. 95, 6268 (2004)

    Article  Google Scholar 

  14. Knutsen, K.E., Galeckas, A., Zubiaga, A., Tuomisto, F., Farlow, G.C., Svensson, B.G., Kuznetsov, A.Y.: Zinc vacancy and oxygen interstitial in ZnO revealed by sequential annealing and electron irradiation. Phys. Rev. B. Condens. Matter. Mater. Phys. 86, 121203 (2012)

    Article  Google Scholar 

  15. Janotti, A., Van de Walle, C.G.: Fundamentals of zinc oxide as a semiconductor. Rep. Prog. Phys. 72, 126501 (2009)

    Article  Google Scholar 

  16. Li, X., Wang, Y., Liu, W., Jiang, G., Zhu, C.: Study of oxygen vacancies′ influence on the lattice parameter in ZnO thin film. Mater. Lett. 85, 25 (2012)

    Article  Google Scholar 

  17. Clark, S.J., Robertson, J., Lany, S., Zunger, A.: Intrinsic defects in ZnO calculated by screened exchange and hybrid density functionals. Phys. Rev. B. Condens. Matter. Mater. Phys. 81, 115311 (2010)

    Article  Google Scholar 

  18. Bhat, S.S., Waghmare, U.V., Ramamurty, U.: Effect of oxygen vacancies on the elastic properties of zinc oxide: a first-principles investigation. Comput. Mater. Sci. 99, 133 (2015)

    Article  Google Scholar 

  19. Tanaka, I., Oba, F., Tatsumi, K., Kunisu, M., Nakano, M., Adachi, H.: Theoretical formation energy of oxygen-vacancies in oxides. Mater. Trans. 43, 1426 (2002)

    Article  Google Scholar 

  20. Khalid, M., Ziese, M., Setzer, A., Esquinazi, P., Lorenz, M., Hochmuth, H., Grundmann, M., Spemann, D., Butz, T., Brauer, G., Anwand, W., Fischer, G., Adeagbo, W.A., Hergert, W., Ernst, A.: Defect-induced magnetic order in pure ZnO films. Phys. Rev. B. Condens. Matter. Mater. Phys. 80, 035331 (2009)

    Article  Google Scholar 

  21. Kayaci, F., Vempati, S., Donmez, I., Biyikli, N., Uyar, T.: Role of zinc interstitials and oxygen vacancies of ZnO in photocatalysis: a bottom-up approach to control defect density. Nanoscale. 6, 10224 (2014)

    Article  Google Scholar 

  22. Koller, D., Tran, F., Blaha, P.: Improving the modified Becke-Johnson exchange potential. Phys. Rev. B. Condens. Matter Mater. Phys. 85, 155109 (2012)

    Article  Google Scholar 

  23. Birch, F.: Finite strain isotherm and velocities for single‐crystal and polycrystalline NaCl at high pressures and 300 K. J. Geophys. Res. 83, 1257 (1978)

    Article  Google Scholar 

  24. Yang, Z.J., Linghu, R.F., Gao, Q.H., Xiong, H.N., Xu, Z.J., Tang, L., Jia, G.Z.: Structural evolution of (Ti0. 5V0. 5) n+ 1GeCn (n= 1–4) under pressure from first principles. Comput. Mater. Sci. 127, 251 (2017)

    Article  Google Scholar 

  25. Elhamra, F., Lakel, S., Meradji, H.: Pressure effect on the structural, electronic, optical and elastic properties of Zn0. 75Be0. 25O from first-principles calculations. Optik. 127, 1754 (2016)

    Article  Google Scholar 

  26. Vidya, R., Ravindran, P., Fjellvåg, H., Svensson, B.G., Monakhov, E., Ganchenkova, M., Nieminen, R.M.: Energetics of intrinsic defects and their complexes in ZnO investigated by density functional calculations. Phys. Rev. B. Condens. Matter. Mater. Phys. 83, 045206 (2011)

    Article  Google Scholar 

  27. Kohan, A., Ceder, G., Morgan, D., Van de Walle, C.G.: First-principles study of native point defects in ZnO. Phys. Rev. B. Condens. Matter. Mater. Phys. 61, 15019 (2000)

    Article  Google Scholar 

  28. Janotti, A., Van De Walle, C.G.: Oxygen vacancies in ZnO. Appl. Phys. Lett. 87, 122102 (2005)

    Article  Google Scholar 

  29. Wang, J., Wang, Z., Huang, B., Ma, Y., Liu, Y., Qin, X., Zhang, X., Dai, Y., Appl, C.S.: Oxygen vacancy induced band-gap narrowing and enhanced visible light photocatalytic activity of ZnO. Mater. Interfaces. 4, 4024 (2012)

    Article  Google Scholar 

  30. Liu, H., Zeng, F., Lin, Y., Wang, G., Pan, F.: Correlation of oxygen vacancy variations to band gap changes in epitaxial ZnO thin films. Appl. Phys. Lett. 102, 181908 (2013)

    Article  Google Scholar 

  31. Zhang, C., Geng, X., Liao, H., Li, C.J., Debliquy, M.: Room-temperature nitrogen-dioxide sensors based on ZnO1−x coatings deposited by solution precursor plasma spray. Sens. Actuators. B Chem. 242, 102 (2017)

    Article  Google Scholar 

  32. Wang, J., Chen, R., Xiang, L., Komarneni, S.: Synthesis, properties and applications of ZnO nanomaterials with oxygen vacancies: a review. Ceram. Int. 44, 7357 (2018)

    Article  Google Scholar 

  33. Tang, Y., Zhou, H., Zhang, K., Ding, J., Fan, T., Zhang, D.: Visible-light-active ZnO via oxygen vacancy manipulation for efficient formaldehyde photodegradation. Chem. Eng. J. 262, 260 (2015)

    Article  Google Scholar 

  34. Jug, K., Tikhomirov, V.A.: Influence of intrinsic defects on the properties of zinc oxide. J. Comput. Chem. 29, 2250 (2008)

    Article  Google Scholar 

  35. Qing-He, G., Zhi-Jun, X., Ling, T., Jin, L., An, D., Yun-Dong, G., Ze-Jin, Y.: Origin of the c-axis ultraincompressibility of Mo2GaC above about 15 GPa from first principles. J. Appl. Phys. 119, 015901 (2016)

    Article  Google Scholar 

  36. Yang, Z.J., Gao, Q.H., Guo, Y.D., Xu, Z.J., Tang, L.: Origin of the hardest c-axis and softest a-axis and lowest transition pressure of Mo2Ga2C from first principles. Mod. Phys. Lett. B. 30, 1650105 (2016)

    Article  Google Scholar 

  37. Lucovsky, G.: Transition from thermally grown gate dielectrics to deposited gate dielectrics for advanced silicon devices: a classification scheme based on bond ionicity. J. Vac. Sci. Technol. A 19, 1553 (2001)

    Article  Google Scholar 

  38. Yang, Z.J., Li, J., Linghu, R.F., Song, X.S., Cheng, X.L., Zhu, Z.H., Yang, X.D.: Equation of state and electronic properties of Cr 2 GeC via first-principles. Eur. Phys. J. B. 86, 208 (2013)

    Article  Google Scholar 

  39. Abdallah, H.B., Ouerghui, W., Saad, K.B.: Ab Initio study of structural, electronic, and magnetic properties of $\mathrm {A} _ {1-x}^{\text {III}} $ MnxBVI: In1− xMnxS-diluted magnetic semiconductor. J. Supercond. Nov. Magnet. 31, 2089 (2018)

    Article  Google Scholar 

  40. Opoku, F., Govender, K.K., Van Sittert, C.G.C.E., Govender, P.P.: Understanding the mechanism of enhanced charge separation and visible light photocatalytic activity of modified wurtzite ZnO with nanoclusters of ZnS and graphene oxide: from a hybrid density functional study. New J. Chem. 41, 8140 (2017)

    Article  Google Scholar 

  41. Delin, A., Ravindran, P., Eriksson, O., Wills, J.M.: Full‐potential optical calculations of lead chalcogenides. Int. J. Quantum Chem. 69, 349 (1998)

    Article  Google Scholar 

  42. Ambrosch-Draxl, C., Sofo, J.O.: Linear optical properties of solids within the full-potential linearized augmented planewave method. Comput. Phys. Commun. 175, 1 (2006)

    Article  Google Scholar 

  43. Saha, S., Sinha, T.P., Mookerjee, A.: Electronic structure, chemical bonding, and optical properties of paraelectric BaTiO 3. Phys. Rev. B. 62, 8828 (2000)

    Article  Google Scholar 

  44. Qing-He, G., Zhi-Jun, X., Ling, T., Xianjun, Z., Guozhu, J., An, D., Rong-Feng, L., Yun-Dong, G., Ze-Jin, Y.: Evidence of the stability of Mo2TiAlC2 from first principles calculations and its thermodynamical and optical properties. Comput. Mater. Sci. 118, 77 (2016)

    Article  Google Scholar 

  45. Bouadjemi, B., Bentata, S., Abbad, A., Benstaali, W.: Ab-initio study of optoelectronic and magnetic properties of the orthorhombic NdMnO3 perovskite. Solid. State. Commun. 207, 9 (2015)

    Article  Google Scholar 

  46. Abdallah, H.B., Bennaceur, R.: First-principles calculations of the electronic and optical properties of In6S7 compound. Phys. B. 404, 194 (2009)

    Article  Google Scholar 

  47. Peen, D.R.: Wave-number-dependent dielectric function of semiconductors. Phys. Rev. 128, 2093 (1962)

    Article  MATH  Google Scholar 

  48. Jacob, A.A., Balakrishnan, L., Meher, S.R., Shambavi, K., Alex, Z.C.: Structural, optical and photodetection characteristics of Cd alloyed ZnO thin film by spin coating. J. Alloys. Compd. 695, 3753 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Qassim University represented by the Deanship of Scientific Research on the material support for this research under the number 5148-alrasscac-2018-1-14-S during the academic year 2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Ouerghui.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ouerghui, W., Alkhalifah, M.S. & Abdallah, H.B. DFT calculations on ZnO1−x compounds for optoelectronic applications. J Comput Electron 20, 467–479 (2021). https://doi.org/10.1007/s10825-020-01645-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-020-01645-9

Keywords

Navigation