Skip to main content
Log in

Long Non-coding RNA FENDRR Modulates Autophagy Through Epigenetic Suppression of ATG7 via Binding PRC2 in Acute Pancreatitis

  • Original Article
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Acute pancreatitis (AP) is an inflammatory, complicated pancreatic disease, carrying significant morbidity and mortality. However, the molecular and cellular mechanisms involved in AP pathogenesis remain to be elucidated. Here, we explore the role of FOXF1 adjacent non-coding developmental regulatory RNA (FENDRR) in AP progression. Caerulein with or without LPS- induced or taurolithocholic acid 3-sulfate (TLC-S)-induced AP mouse models and cell models were performed for the validation of FENDRR expression in vivo and in vitro, respectively. Histopathological examinations of pancreatic tissues were performed to evaluate the severity of AP. Transmission electron microscopy was utilized to visualize the autophagic vacuoles. siRNA specifically targeting FENDRR was further applied. Flow cytometry was employed to assess cell apoptosis. ELISA, immunoflureoscence, and western blotting analysis were also performed to determine the levels of inflammatory cytokines and autophagy activity. RNA immunoprecipitation (RIP) and chromatin immunoprecipitation (ChIP) assays were carried out to reveal the epigenetic regulation of FENDRR on ATG7. Additionally, silencing FENDRR was also verified in AP mouse models. Higher FENDRR and impaired autophagy were displayed in both AP mouse models and cell models. FENDRR knockdown dramatically attenuated caerulein- or TLC-S-induced AR42J cells apoptosis and autophagy suppression. Further mechanistic experiments implied that the action of FENDRR is moderately attributable to its repression of ATG7 via direct interaction with the epigenetic repressor PRC2. Moreover, the silencing of FENDRR significantly induced the promotion of ATG7, thus alleviating the development of AP in vivo. Our study highlights FENDRR as a novel target that may contribute to AP progression, suggesting a therapeutic target for AP treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

References

  1. van Dijk, S.M., et al. 2017. Acute pancreatitis: Recent advances through randomised trials. Gut 66 (11): 2024–2032.

    Article  Google Scholar 

  2. Mandalia, A., E.J. Wamsteker, and M.J. DiMagno. 2018. Recent advances in understanding and managing acute pancreatitis. F1000Res 7.

  3. Portelli, M., and C.D. Jones. 2017. Severe acute pancreatitis: Pathogenesis, diagnosis and surgical management. Hepatobiliary & Pancreatic Diseases International 16 (2): 155–159.

    Article  Google Scholar 

  4. Majidi, S., A. Golembioski, S.L. Wilson, and E.C. Thompson. 2017. Acute pancreatitis: Etiology, pathology, diagnosis, and treatment. Southern Medical Journal 110 (11): 727–732.

    Article  CAS  Google Scholar 

  5. Kimura, Y., M. Kikuyama, and Y. Kodama. 2015. Acute pancreatitis as a possible Indicator of pancreatic Cancer: The importance of mass detection. Internal Medicine 54 (17): 2109–2114.

    Article  CAS  Google Scholar 

  6. Faghih, M., C. Fan, and V.K. Singh. 2019. New advances in the treatment of acute pancreatitis. Current Treatment Options in Gastroenterology 17: 146–160.

    Article  Google Scholar 

  7. Gukovskaya, A.S., I. Gukovsky, H. Algül, and A. Habtezion. 2017. Autophagy, inflammation, and immune dysfunction in the pathogenesis of pancreatitis. Gastroenterology 153 (5): 1212–1226.

    Article  CAS  Google Scholar 

  8. Mizumura, K., A.M. Choi, and S.W. Ryter. 2014. Emerging role of selective autophagy in human diseases. Frontiers in Pharmacology 5: 244.

    Article  Google Scholar 

  9. Kawabata, T., and T. Yoshimori. 2016. Beyond starvation: An update on the autophagic machinery and its functions. Journal of Molecular and Cellular Cardiology 95: 2–10.

    Article  CAS  Google Scholar 

  10. Gukovskaya, A.S., and I. Gukovsky. 2012. Autophagy and pancreatitis. American Journal of Physiology. Gastrointestinal and Liver Physiology 303 (9): G993–G1003.

    Article  CAS  Google Scholar 

  11. Mareninova, O.A., K. Hermann, S.W. French, M.S. O’Konski, S.J. Pandol, P. Webster, A.H. Erickson, N. Katunuma, F.S. Gorelick, I. Gukovsky, and A.S. Gukovskaya. 2009. Impaired autophagic flux mediates acinar cell vacuole formation and trypsinogen activation in rodent models of acute pancreatitis. The Journal of Clinical Investigation 119 (11): 3340–3355.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Gukovsky, I., N. Li, J. Todoric, A. Gukovskaya, and M. Karin. 2013. Inflammation, autophagy, and obesity: Common features in the pathogenesis of pancreatitis and pancreatic cancer. Gastroenterology 144 (6): 1199–1209 e4.

    Article  CAS  Google Scholar 

  13. Krishnan, J., and R.K. Mishra. 2014. Emerging trends of long non-coding RNAs in gene activation. The FEBS Journal 281 (1): 34–45.

    Article  CAS  Google Scholar 

  14. Prensner, J.R., and A.M. Chinnaiyan. 2011. The emergence of lncRNAs in cancer biology. Cancer Discovery 1 (5): 391–407.

    Article  CAS  Google Scholar 

  15. Mathy, N.W., and X.M. Chen. 2017. Long non-coding RNAs (lncRNAs) and their transcriptional control of inflammatory responses. The Journal of Biological Chemistry 292 (30): 12375–12382.

    Article  CAS  Google Scholar 

  16. Dai, Y., Z. Liang, Y. Li, C. Li, and L. Chen. 2017. Circulating long noncoding RNAs as potential biomarkers of Sepsis: A preliminary study. Genetic Testing and Molecular Biomarkers 21 (11): 649–657.

    Article  CAS  Google Scholar 

  17. Zhang, G., G. Han, X. Zhang, Q. Yu, Z. Li, Z. Li, and J. Li. 2018. Long non-coding RNA FENDRR reduces prostate cancer malignancy by competitively binding miR-18a-5p with RUNX1. Biomarkers 23 (5): 435–445.

    Article  CAS  Google Scholar 

  18. Xu, T.P., M.D. Huang, R. Xia, X.X. Liu, M. Sun, L. Yin, W.M. Chen, L. Han, E.B. Zhang, R. Kong, W. de, and Y.Q. Shu. 2014. Decreased expression of the long non-coding RNA FENDRR is associated with poor prognosis in gastric cancer and FENDRR regulates gastric cancer cell metastasis by affecting fibronectin1 expression. Journal of Hematology & Oncology 7: 63.

    Article  Google Scholar 

  19. Zhao, D., et al. 2018. The interaction between ANXA2 and lncRNA Fendrr promotes cell apoptosis in caerulein-induced acute pancreatitis. Journal of Cellular Biochemistry.

  20. Liu, S., H. Zou, Y. Wang, X. Duan, C. Chen, W. Cheng, L. Wang, N. Ning, H. Tang, M. Chen, X. Mao, C. Peng, H. Li, Y. Jiang, and B. Jiang. 2018. miR-155-5p is negatively associated with acute pancreatitis and inversely regulates pancreatic acinar cell progression by targeting Rela and Traf3. Cellular Physiology and Biochemistry 51 (4): 1584–1599.

    Article  CAS  Google Scholar 

  21. Wang, Y., G. Wang, L. Cui, R. Liu, H. Xiao, and C. Yin. 2018. Angiotensin 1-7 ameliorates caerulein-induced inflammation in pancreatic acinar cells by downregulating toll-like receptor 4/nuclear factor-kappaB expression. Molecular Medicine Reports 17 (3): 3511–3518.

    CAS  PubMed  Google Scholar 

  22. Yang, Z., W. Yang, M. Lu, Z. Li, X. Qiao, B. Sun, W. Zhang, and D. Xue. 2018. Role of the c-Jun N-terminal kinase signaling pathway in the activation of trypsinogen in rat pancreatic acinar cells. International Journal of Molecular Medicine 41 (2): 1119–1126.

    Article  CAS  Google Scholar 

  23. Demols, A., J.L. van Laethem, E. Quertinmont, C. Degraef, M. Delhaye, A. Geerts, and J. Deviere. 2002. Endogenous interleukin-10 modulates fibrosis and regeneration in experimental chronic pancreatitis. American Journal of Physiology. Gastrointestinal and Liver Physiology 282 (6): G1105–G1112.

    Article  CAS  Google Scholar 

  24. Jacob, T.G., R. Raghav, A. Kumar, P.K. Garg, and T.S. Roy. 2014. Duration of injury correlates with necrosis in caerulein-induced experimental acute pancreatitis: Implications for pathophysiology. International Journal of Experimental Pathology 95 (3): 199–208.

    Article  CAS  Google Scholar 

  25. Xiang, H., X. Tao, S. Xia, J. Qu, H. Song, J. Liu, and D. Shang. 2017. Targeting MicroRNA function in acute pancreatitis. Frontiers in Physiology 8: 726.

    Article  Google Scholar 

  26. Yu, J.H., J.Y. Seo, K.H. Kim, and H. Kim. 2008. Differentially expressed proteins in cerulein-stimulated pancreatic acinar cells: Implication for acute pancreatitis. The International Journal of Biochemistry & Cell Biology 40 (3): 503–516.

    Article  Google Scholar 

  27. Raraty, M.G., et al. 2005. Mechanisms of acinar cell injury in acute pancreatitis. Scandinavian Journal of Surgery 94 (2): 89–96.

    Article  CAS  Google Scholar 

  28. Bhatia, M. 2004. Apoptosis of pancreatic acinar cells in acute pancreatitis: Is it good or bad? Journal of Cellular and Molecular Medicine 8 (3): 402–409.

    Article  CAS  Google Scholar 

  29. Reggiori, F., et al. 2012. Autophagy: More than a nonselective pathway. International Journal of Cell Biology 2012: 219625.

    PubMed  PubMed Central  Google Scholar 

  30. Diakopoulos, K.N., M. Lesina, S. Wörmann, L. Song, M. Aichler, L. Schild, A. Artati, W. Römisch-Margl, T. Wartmann, R. Fischer, Y. Kabiri, H. Zischka, W. Halangk, I.E. Demir, C. Pilsak, A. Walch, C.S. Mantzoros, J.M. Steiner, M. Erkan, R.M. Schmid, H. Witt, J. Adamski, and H. Algül. 2015. Impaired autophagy induces chronic atrophic pancreatitis in mice via sex- and nutrition-dependent processes. Gastroenterology 148 (3): 626–638 e17.

    Article  Google Scholar 

  31. Gukovsky, I., and A.S. Gukovskaya. 2015. Impaired autophagy triggers chronic pancreatitis: Lessons from pancreas-specific atg5 knockout mice. Gastroenterology 148 (3): 501–505.

    Article  Google Scholar 

  32. Iwahashi, K., H. Hikita, Y. Makino, M. Shigekawa, K. Ikezawa, T. Yoshioka, T. Kodama, R. Sakamori, T. Tatsumi, and T. Takehara. 2018. Autophagy impairment in pancreatic acinar cells causes zymogen granule accumulation and pancreatitis. Biochemical and Biophysical Research Communications 503 (4): 2576–2582.

    Article  CAS  Google Scholar 

  33. Zhang, K., H. Shi, H. Xi, X. Wu, J. Cui, Y. Gao, W. Liang, C. Hu, Y. Liu, J. Li, N. Wang, B. Wei, and L. Chen. 2017. Genome-wide lncRNA microarray profiling identifies novel circulating lncRNAs for detection of gastric Cancer. Theranostics 7 (1): 213–227.

    Article  CAS  Google Scholar 

  34. Xu, W., L. He, Y. Li, Y. Tan, F. Zhang, and H. Xu. 2018. Silencing of lncRNA ZFAS1 inhibits malignancies by blocking Wnt/beta-catenin signaling in gastric cancer cells. Bioscience, Biotechnology, and Biochemistry 82 (3): 456–465.

    Article  CAS  Google Scholar 

  35. Grote, P., L. Wittler, D. Hendrix, F. Koch, S. Währisch, A. Beisaw, K. Macura, G. Bläss, M. Kellis, M. Werber, and B.G. Herrmann. 2013. The tissue-specific lncRNA Fendrr is an essential regulator of heart and body wall development in the mouse. Developmental Cell 24 (2): 206–214.

    Article  CAS  Google Scholar 

  36. Yang, L., D. Wu, J. Chen, J. Chen, F. Qiu, Y. Li, L. Liu, Y. Cao, B. Yang, Y. Zhou, and J. Lu. 2018. A functional CNVR_3425.1 damping lincRNA FENDRR increases lifetime risk of lung cancer and COPD in Chinese. Carcinogenesis 39 (3): 347–359.

    Article  CAS  Google Scholar 

  37. Chen, R., W.X. Li, Y. Sun, Y. Duan, Q. Li, A.X. Zhang, J.L. Hu, Y.M. Wang, and Y.D. Gao. 2017. Comprehensive analysis of lncRNA and mRNA expression profiles in lung Cancer. Clinical Laboratory 63 (2): 313–320.

    CAS  PubMed  Google Scholar 

  38. Ibeagha-Awemu, E.M., et al. 2018. Integration of lncRNA and mRNA Transcriptome Analyses Reveals Genes and Pathways Potentially Involved in Calf Intestinal Growth and Development during the Early Weeks of Life. Genes (Basel) 9 (3).

  39. Antonucci, L., J.B. Fagman, J.Y. Kim, J. Todoric, I. Gukovsky, M. Mackey, M.H. Ellisman, and M. Karin. 2015. Basal autophagy maintains pancreatic acinar cell homeostasis and protein synthesis and prevents ER stress. Proceedings of the National Academy of Sciences of the United States of America 112 (45): E6166–E6174.

    Article  CAS  Google Scholar 

  40. Chen, S., D.D. Wu, X.B. Sang, L.L. Wang, Z.H. Zong, K.X. Sun, B.L. Liu, and Y. Zhao. 2017. The lncRNA HULC functions as an oncogene by targeting ATG7 and ITGB1 in epithelial ovarian carcinoma. Cell Death & Disease 8 (10): e3118.

    Article  CAS  Google Scholar 

  41. Zhou, X., L. Xie, L. Xia, F. Bergmann, M.W. Büchler, G. Kroemer, T. Hackert, and F. Fortunato. 2017. RIP3 attenuates the pancreatic damage induced by deletion of ATG7. Cell Death & Disease 8 (7): e2918.

  42. Qiang, L., A. Sample, C.R. Shea, K. Soltani, K.F. Macleod, and Y.Y. He. 2017. Autophagy gene ATG7 regulates ultraviolet radiation-induced inflammation and skin tumorigenesis. Autophagy 13 (12): 2086–2103.

    Article  CAS  Google Scholar 

  43. Ye, Y., X. Li, W. Wang, K.C. Ouedraogo, Y. Li, C. Gan, S. Tan, X. Zhou, and M. Wu. 2014. Atg7 deficiency impairs host defense against Klebsiella pneumoniae by impacting bacterial clearance, survival and inflammatory responses in mice. American Journal of Physiology. Lung Cellular and Molecular Physiology 307 (5): L355–L363.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by Natural Science Foundation of Hunan Province (grant no: 2019JJ40472).

Author information

Authors and Affiliations

Authors

Contributions

Guarantor of integrity of the entire study: Shang-Ping Zhao

Study concepts: Shang-Ping Zhao

Study design: Shang-Ping Zhao and Xue-Fei Xiao

Definition of intellectual content: Ming-Shi Yang

Literature research: Zuo-Liang Liu

Experimental studies: Can Yu

Data acquisition: Can Yu

Data analysis: Shang-Ping Zhao and Can Yu

Statistical analysis: Zuo-Liang Liu

Manuscript preparation: Zuo-Liang Liu

Manuscript editing: Can Yu

Manuscript review: Bing-Chang Yang and Xue-Fei Xiao

Corresponding author

Correspondence to Xue-Fei Xiao.

Ethics declarations

Ethics Approval

Mice were treated with humane care under approval from the Animal Care and Use Committee of the Third Xiangya Hospital Affiliated to Central South University.

Conflict of Interest

The authors declare that they have no conflict of interest. 

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, SP., Yu, C., Yang, MS. et al. Long Non-coding RNA FENDRR Modulates Autophagy Through Epigenetic Suppression of ATG7 via Binding PRC2 in Acute Pancreatitis. Inflammation 44, 999–1013 (2021). https://doi.org/10.1007/s10753-020-01395-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-020-01395-7

KEY WORDS

Navigation