Skip to main content

Advertisement

Log in

Immortalization of primary sheep embryo kidney cells

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Sheep primary epithelial cells are short-lived in cell culture systems. For long-term in vitro studies, primary cells need to be immortalized. This study aims to establish and characterize T immortalized sheep embryo kidney cells (TISEKC). In this study, we used fetal lamb kidneys to derive primary cultures of epithelial cells. We subsequently immortalized these cells using the large T SV40 antigen to generate crude TISEKC and isolate TISEKC clones. Among numerous clones of immortalized cells, the selected TISEKC-5 maintained active division and cell growth over 20 passages but lacked expression of the oncogenic large T SV40 antigen. Morphologically, TISEKC-5 maintained their epithelial aspect similar to the parental primary epithelial cells. However, their growth properties showed quite different patterns. Crude TISEKC, as well as the clones of TISEKC proliferated highly in culture compared to the parental primary cells. In the early passages, immortalized cells showed heterogeneous polyploidy but in the late passages the karyotype of immortalized cells became progressively stable, identical to that of the primary cells, because the TISEKC-5 cell line has lost the large SV40 T antigen expression, this cell line is a valuable tool for veterinary sciences and biotechnological productions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.

Similar content being viewed by others

References

  • Ahuja D, Sáenz-Robles MT, Pipas JM (2005) SV40 large T antigen targets multiple cellular pathways to elicit cellular transformation. Oncogene 24:7729–7745

    Article  CAS  Google Scholar 

  • Ali SH, Kasper JS, Arai T, De Caprio JA (2004) Cul7/p185/p193 binding to simian virus 40 large T antigen has a role in cellular transformation. J Virol 78:2749–2757

    Article  CAS  Google Scholar 

  • An P, Sáenz Robles MT, Pipas JM (2012) Large T antigens of polyomaviruses: amazing molecular machines. Annu Rev Microbiol 66:213–236

    Article  CAS  Google Scholar 

  • Babiuk S, Parkyn G, Copps J, Larence JE, Sabara MI, Bowden TR, Boyle DB, Kitching RP (2007) Evaluation of an ovine testis cell line (OA3.Ts) for propagation of capripoxvirus isolates and development of an immunostaining technique for viral plaque visualization. J Vet Diagn Investig 19:486–491. https://doi.org/10.1177/104063870701900505

    Article  Google Scholar 

  • Banks-Schlegel SP, Howlev PM (1983) Differentiation of human epidermal cells transformed by SV40. J Cell Biol 96:330–337

    Article  CAS  Google Scholar 

  • Bloomfield M, Duesberg P (2015) Karyotype alteration generates the neoplastic phenotypes of SV40-infected human and rodent cells. Mol Cytogenet 8:79

    Article  Google Scholar 

  • Cascio SM (2001) Novel strategies for immortalization of human hepatocytes. Artif Organs 25:529–538

    Article  CAS  Google Scholar 

  • Chang TH, Ray FA, Thompson DA, Schlegel R (1997) Disregulation of mitotic checkpoints and regulatory proteins following acute expression of SV40 large T antigen in diploid human cells. Oncogene 14:2383–2393

    Article  CAS  Google Scholar 

  • Colvin EK, Weir C, Ikin RJ, Hudson AL (2014) SV40 TAg mouse models of cancer. Semin Cell Dev Biol 27:61–73

    Article  CAS  Google Scholar 

  • Cotsiki M, Lock RL, Cheng Y, Williams GL, Zhao J, Perera D, Freire R, Entwistle A, Golemis EA, Roberts TM, Jat PS, Gjoerup OV (2004) Simian virus 40 large T antigen targets the spindle assembly checkpoint protein Bub1. Proc Natl Acad Sci U S A 101:947–952

    Article  CAS  Google Scholar 

  • Da Silva Teixeira MF, Lambert V, Mselli-Lakahl L, Chettab A, Chebloune Y, Morex JF (1997) Immortalization of caprine fibroblasts permissive for replication of small ruminant lentiviruses. AJVR 58(6):579–584

    Google Scholar 

  • De Lange M (1959) The histology of the cytopathic changes produced in monolayer of epithelial cultures by viruses associated with lumpy skin disease. Onderstepoort J Vet Res 28:245–255

    Google Scholar 

  • European Food Safety Authority (EU body or agency) (2018) Veterinary sector and animal health, slaughter animal, slaughter of animals. https://doi.org/10.2805/270833

  • Gaush CR, Hard WL, Smith TF (1966) Characterization of an established line of canine kidney cells (MDCK). Proc Soc Exp Biol Med 122:931–935

    Article  CAS  Google Scholar 

  • Gluzman Y, Otsuka H, Kit S (1980) Origin-defective mutants of SV40. Cold Spring Harb Symp Quant Biol 44:293–300

    Article  CAS  Google Scholar 

  • Gómez-Lechón MJ, Donato MT, Castell JV, Jover R (2003) Human hepatocytes as a tool for studying toxicity and drug metabolism. Curr Drug Metab 4(292):312–312. https://doi.org/10.2174/1389200033489424

    Article  Google Scholar 

  • Graham FL, Smiley J, Russell WC, Nairn R (1977) Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J Gen Virol 36:59–74. https://doi.org/10.1099/0022-1317-36-1-59

    Article  CAS  PubMed  Google Scholar 

  • Hein J, Boichuk S, Wu J, Cheng Y, Freire R, Jat PS, Roberts TM, Gjoerup OV (2009) Simian virus 40 large T antigen disrupts genome integrity and activates a DNA damage response via Bub1 binding. J Virol 83(1):117–127

    Article  CAS  Google Scholar 

  • Hu L, Filippakis H, Huang H, Yen TJ, Gjoerup OV (2013) Replication stress and mitotic dysfunction in cells expressing simian virus 40 large T antigen. J Virol 87(24):13179–13192

    Article  CAS  Google Scholar 

  • Jat PS, Sharp PA (1986) Large T antigen of simian virus 40 and polyomavirus efficiently establish primary fibroblasts. J Virol 59:746–750

    Article  CAS  Google Scholar 

  • Levine DS, Sanchez CA, Rabinovitch PS, Reid BJ (1991) Formation of the tetraploid intermediate is associated with the development of cells with more than four centrioles in the elastase-simian virus 40 tumor antigen transgenic mouse model of pancreatic cancer. Proc Natl Acad Sci U S A 88:6427–6431

    Article  CAS  Google Scholar 

  • Lock RL, Benvenuti S, Jat PS (2004) Immortalization by Sv40 large T antigen. In: Stein GS, Pardee AB (eds) Cell Cycle and Growth Control: Biomolecular Regulation and Cancer second, pp 15–92

    Google Scholar 

  • Madin SH, Darby NB Jr (1958) Established kidney cell lines of normal adult bovine and ovinorigin. Proc Soc Exp Biol Med 98:574–576

    Article  CAS  Google Scholar 

  • Martini F, Corallini A, Balatti V, Sabbioni S, Pancaldi C, Tognon M (2007) Simian virus 40 in humans. Infect Agent Cancer 2:13

    Article  Google Scholar 

  • Matsuda T, Cepko CL (2004) Electroporation and RNA interference in the rodent retina in vivo and in vitro. Proc Natl Acad Sci U S A 101(1):16–22

    Article  CAS  Google Scholar 

  • Ray FA, Kraemer PM (1993) Iterative chromosome mutation and selection as a mechanism of complete transformation of human diploid fibroblasts by SV4O large T antigen. Carcinogenesis 14:15111516

    Article  Google Scholar 

  • Ray FA, Peabody DS, Cooper JL, Cram LS, Kraemer PM (1990) SV40 T antigen alone drives karyotype instability that precedes neoplastic transformation of human diploid fibroblasts. J Cell Biochem 42:13–31

    Article  CAS  Google Scholar 

  • Sachsenmeier KF, Pipas JM (2001) Inhibition of Rb and p53 is insufficient for SV40 T-antigen transformation. Virology 283:40–48

    Article  CAS  Google Scholar 

  • Schafer KA (1998) The cell cycle: a review. Vet Pathol 35:461–478

    Article  CAS  Google Scholar 

  • Schiller JH, Bittner G, Wu SQ, Meisner L (1998) Karyotypic changes associated with spontaneous acquisition and loss of tumorigenicity in a human transformed bronchial epithelial cell line: evidence for in vivo selection of transformed clones. In Vitro Cell Dev Biol Anim 34:283–289

    Article  CAS  Google Scholar 

  • Shay JW, Wright WE (1989) Quantitation of the frequency of immortalization of normal human diploid fibroblasts by SV4O large T-antigen. Exp Cell Res 184:109–118

    Article  CAS  Google Scholar 

  • Simizu B et al (1967) Characterization of the Tacaribe group of arboviruses. I. Propagation and plaque assay of Tacaribe virus in a line of African green monkey kidney cells (Vero). Proc Soc Exp Biol Med 125:19–123

    Article  Google Scholar 

  • Stewart N, Bacchetti S (1991) Expression of SV40 large T antigen, but not small t antigen, is required for the induction of chromosomal aberrations in transformed human cells. Virology 180:49–57

    Article  CAS  Google Scholar 

  • Taylor WP, Abegunde A (1979) The isolation of peste des petits ruminants virus from Nigerian sheep and goats. Res Vet Sci 26(1):94–96

    Article  CAS  Google Scholar 

  • Wei W, Jobling WA, Chen W, Hahn WC, Sedivy JM (2003) Abolition of cyclin-dependent kinase inhibitor p16Ink4a and p21Cip1/Waf1 functions permits Ras-induced anchorage-independent growth in telomerase-immortalized human fibroblasts. Mol Cell Biol 23:2859–2870

    Article  CAS  Google Scholar 

  • Welcker M, Clurman BE (2005) The SV40 large T antigen contains a decoy phosphodegron that mediates its interactions with Fbw7/hCdc4. J Biol Chem 280:7654–7658

    Article  CAS  Google Scholar 

  • Woods C, LeFeuvre C, Stewart N, Bacchetti S (1994) Induction of genomic instability in SV40 transformed human cells: sufficiency of the N-terminal 147 amino acids of large T antigen and role of pRB and p53. Oncogene 9:2943–2950

    CAS  PubMed  Google Scholar 

  • Wu X, Avni D, Chiba T, Yan F, Zhao Q, Lin Y, Heng H, Livingston D (2004) SV40 T antigen interacts with Nbs1 to disrupt DNA replication control. Genes Dev 18:1305–1316

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to gratefully thank Myriam Khattabi and Marcelline Samadane for excellent technical help.

Funding

This work was supported by the Algerian Ministry of High Education and Scientific Research, the University of Sciences and Technology “Houari Boumediene” Algiers, the French INRA, and the University of Grenoble Alps.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Chebloune.

Additional information

Editor: Tetsuji Okamoto

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seridi, N., Hamidouche, M., Belmessabih, N. et al. Immortalization of primary sheep embryo kidney cells. In Vitro Cell.Dev.Biol.-Animal 57, 76–85 (2021). https://doi.org/10.1007/s11626-020-00520-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-020-00520-y

Keywords

Navigation