Skip to main content

Advertisement

Log in

Resolving the \(H_0\) tension with diffusion

  • Editor’s Choice (Research Article)
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

The tension between the value of the Hubble constant \(H_0\) determined from local supernovae data and the one inferred from the cosmic microwave background based on the \(\Lambda \)CDM cosmological model may indicate the need for new physics. Here, we show that this ‘Hubble tension’ can be resolved in models involving an effective energy flux from the matter sector into dark energy resulting naturally from a combination of unimodular gravity and an energy diffusion process. The scheme is one where dark energy has the standard equation of state \(w=-1\). This proposal provides an alternative phenomenological paradigm accounting for the observations, while offering a general framework to study diffusion effects coming from novel fundamental physical processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Planck Collaboration, Adam, R., et al.: Planck 2015 results. I. Overview of products and scientific results. Astron. Astrophys. 594 (2016) A1, arXiv:1502.01582

  2. Planck Collaboration, Aghanim, N., et al., Planck 2018 results. VI. Cosmological parameters. arXiv:1807.06209

  3. BOSS Collaboration, Alam, S., et al., The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample. Mon. Not. Roy. Astron. Soc. 470 (2017) 2617–2652, arXiv:1607.03155

  4. Riess, A.G., Casertano, S., Yuan, W., Macri, L.M., Scolnic, D.: Large magellanic cloud cepheid standards provide a 1% foundation for the determination of the hubble constant and stronger evidence for physics beyond \(\Lambda \)CDM. Astrophys. J. 876, 85 (2019). arXiv:1903.07603

    Article  ADS  Google Scholar 

  5. Reid, M., Pesce, D., Riess, A.: An improved distance to NGC 4258 and its implications for the hubble constant. Astrophys. J. 886, L27 (2019). arXiv:1908.05625

    Article  ADS  Google Scholar 

  6. Freedman, W.L., et al.: The Carnegie-Chicago Hubble Program. VIII. An Independent Determination of the Hubble Constant Based on the Tip of the Red Giant Branch. arXiv:1907.05922

  7. Farr, W.M., Fishbach, M., Ye, J., Holz, D.: A future percent-level measurement of the hubble expansion at redshift 0.8 with advanced LIGO. Astrophys. J. 883, L42 (2019). arXiv:1908.09084

    Article  ADS  Google Scholar 

  8. Bergström, L.: Nonbaryonic dark matter: Observational evidence and detection methods. Rept. Prog. Phys. 63, 793 (2000). arXiv:hep-ph/0002126

    Article  ADS  Google Scholar 

  9. Clifton, T., Ferreira, P.G., Padilla, A., Skordis, C.: Modified gravity and cosmology. Phys. Rept. 513, 1–189 (2012). arXiv:1106.2476

    Article  ADS  MathSciNet  Google Scholar 

  10. Martin, J.: Everything you always wanted to know about the cosmological constant problem (But Were Afraid To Ask). Comptes Rendus Phys. 13, 566–665 (2012). arXiv:1205.3365

    Article  ADS  Google Scholar 

  11. Supernova Search Team, Riess, A.G., et al.: Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116 (1998) 1009–1038, arXiv:astro-ph/9805201

  12. Supernova Cosmology Project, Perlmutter, S., et al.: Measurements of Omega and Lambda from 42 high redshift supernovae. Astrophys. J. 517 (1999) 565–586, arXiv:astro-ph/9812133

  13. Bernal, J.L., Verde, L., Riess, A.G.: The trouble with \(H_0\). JCAP 1610, 019 (2016). arXiv:1607.05617

    Article  ADS  Google Scholar 

  14. Freedman, W.L.: Cosmology at a crossroads. Nat. Astron. 1, 0121 (2017). arXiv:1706.02739

    Article  ADS  Google Scholar 

  15. Poulin, V., Smith, T.L., Karwal, T., Kamionkowski, M.: Early dark energy can resolve the hubble tension. Phys. Rev. Lett. 122, 221301 (2019). arXiv:1811.04083

    Article  ADS  Google Scholar 

  16. Colgáin, E.Ó., van Putten, M.H., Yavartanoo, H.: de Sitter Swampland, \(H_0\) tension & observation. Phys. Lett. B793, 126–129 (2019). arXiv:1807.07451

    Article  ADS  Google Scholar 

  17. Kumar, S., Nunes, R.C., Yadav, S.K.: Dark sector interaction: a remedy of the tensions between CMB and LSS data. Eur. Phys. J. C 79, 576 (2019). arXiv:1903.04865

    Article  ADS  Google Scholar 

  18. Di Valentino, E., Melchiorri, A., Mena, O., Vagnozzi, S.: Interacting dark energy after the latest Planck, DES, and \(H_0\) measurements: an excellent solution to the \(H_0\) and cosmic shear tensions. arXiv:1908.04281

  19. Agrawal, P., Obied, G., Vafa, C.: \(H_0\) Tension, Swampland conjectures and the epoch of fading dark matter. arXiv:1906.08261

  20. Rossi, M., Ballardini, M., Braglia, M., Finelli, F., Paoletti, D., Starobinsky, A.A., Umiltà, C.: Cosmological constraints on post-Newtonian parameters in effectively massless scalar-tensor theories of gravity. Phys. Rev. D 100, 103524 (2019). arXiv:1906.10218

    Article  ADS  Google Scholar 

  21. Josset, T., Perez, A., Sudarsky, D.: Dark Energy from Violation of Energy Conservation. Phys. Rev. Lett. 118, 021102 (2017). arXiv:1604.04183

    Article  ADS  Google Scholar 

  22. Collins, J., Perez, A., Sudarsky, D., Urrutia, L., Vucetich, H.: Lorentz invariance and quantum gravity: an additional fine-tuning problem? Phys. Rev. Lett. 93, 191301 (2004). arXiv:gr-qc/0403053

    Article  ADS  MathSciNet  Google Scholar 

  23. Collins, J., Perez, A., Sudarsky, D.: Lorentz invariance violation and its role in quantum gravity phenomenology. arXiv:hep-th/0603002

  24. Perez, A., Sudarsky, D.: Dark energy from quantum gravity discreteness. Phys. Rev. Lett. 122, 221302 (2019). arXiv:1711.05183

    Article  ADS  Google Scholar 

  25. Perez, A., Sudarsky, D., Bjorken, J.D.: A microscopic model for an emergent cosmological constant. Int. J. Mod. Phys. D 27, 1846002 (2018). arXiv:1804.07162

    Article  ADS  Google Scholar 

  26. Perez, A., Sudarsky, D.: Black holes, Planckian granularity, and the changing cosmological ’constant’. arXiv:1911.06059

  27. Banerjee, S., Benisty, D., Guendelman, E.I.: Running vacuum from dynamical spacetime cosmology. arXiv:1910.03933

  28. Ellis, G.F.R., van Elst, H., Murugan, J., Uzan, J.-P.: On the trace-free Einstein equations as a viable alternative to general relativity. Class. Quant. Gravit. 28, 225007 (2011). arXiv:1008.1196

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Weinberg, S.: The cosmological constant problem. Rev. Mod. Phys. 61, 1–23 (1989)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Sorkin, R.D.: Causal sets: discrete gravity. arXiv:gr-qc/0309009

  31. Jacobson, T.: Thermodynamics of space-time: The Einstein equation of state. Phys. Rev. Lett. 75, 1260–1263 (1995). arXiv:gr-qc/9504004

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Jacobson, T.: Entanglement equilibrium and the Einstein equation. Phys. Rev. Lett. 116, 201101 (2016). arXiv:1505.04753

    Article  ADS  MathSciNet  Google Scholar 

  33. Benisty, D., Guendelman, E.I.: Interacting diffusive unified dark energy and dark matter from scalar fields. Eur. Phys. J. C 77, 396 (2017). arXiv:1701.08667

    Article  ADS  Google Scholar 

  34. Benisty, D., Guendelman, E., Haba, Z.: Unification of dark energy and dark matter from diffusive cosmology. Phys. Rev. D 99, 123521 (2019). arXiv:1812.06151

    Article  ADS  MathSciNet  Google Scholar 

  35. Eppley, K., Hannah, E.: The necessity of quantizing the gravitational field. Found. Phys. 7, 51–68 (1977)

    Article  ADS  Google Scholar 

  36. Page, D.N., Geilker, C.D.: Indirect evidence for quantum gravity. Phys. Rev. Lett. 47, 979–982 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  37. Carlip, S.: Is quantum gravity necessary? Class. Quant. Gravit. 25, 154010 (2008). arXiv:0803.3456

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Maudlin, T., Okon, E., Sudarsky, D.: On the status of conservation laws in physics: implications for semiclassical gravity. arXiv:1910.06473

  39. Amadei, L., Perez, A.: Hawking’s information puzzle: a solution realized in loop quantum cosmology. arXiv:1911.00306

  40. Amadei, L., Liu, H., Perez, A.: Unitarity and information in quantum gravity: a simple example. arXiv:1912.09750

  41. Perez, A.: No firewalls in quantum gravity: the role of discreteness of quantum geometry in resolving the information loss paradox. Class. Quant. Gravit. 32, 084001 (2015). arXiv:1410.7062

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Perez, A.: Black holes in loop quantum gravity. Rept. Prog. Phys. 80, 126901 (2017). arXiv:1703.09149

    Article  ADS  MathSciNet  Google Scholar 

  43. Perez, A., Sahlmann, H., Sudarsky, D.: On the quantum origin of the seeds of cosmic structure. Class. Quant. Gravit. 23, 2317–2354 (2006). arXiv:gr-qc/0508100

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. León, G.: Eternal inflation and the quantum birth of cosmic structure. Eur. Phys. J. C 77, 705 (2017). arXiv:1705.03958

    Article  ADS  Google Scholar 

  45. Okon, E., Sudarsky, D.: Benefits of Objective Collapse Models for Cosmology and Quantum Gravity. Found. Phys. 44, 114–143 (2014). arXiv:1309.1730

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Okon, E., Sudarsky, D.: The black hole information paradox and the collapse of the wave function. Found. Phys. 45, 461–470 (2015). arXiv:1406.2011

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Modak, S.K., Ortíz, L., Peña, I., Sudarsky, D.: Non-paradoxical loss of information in black hole evaporation in a quantum collapse model. Phys. Rev. D 91, 124009 (2015). arXiv:1408.3062

    Article  ADS  Google Scholar 

  48. Bedingham, D., Modak, S.K., Sudarsky, D.: Relativistic collapse dynamics and black hole information loss. Phys. Rev. D 94, 045009 (2016). arXiv:1604.06537

    Article  ADS  MathSciNet  Google Scholar 

  49. Okon, E., Sudarsky, D.: Losing stuff down a black hole. Found. Phys. 48, 411–428 (2018). arXiv:1710.01451

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. Bassi, A., Ippoliti, E., Vacchini, B.: On the energy increase in space-collapse models. J. Phys. A Math. General 38, 8017–8038 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. Visser, M.: Jerk and the cosmological equation of state. Class. Quant. Gravit. 21, 2603–2616 (2004). arXiv:gr-qc/0309109

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. Aviles, A., Gruber, C., Luongo, O., Quevedo, H.: Cosmography and constraints on the equation of state of the Universe in various parametrizations. Phys. Rev. D 86, 123516 (2012). arXiv:1204.2007

    Article  ADS  Google Scholar 

  53. Bruni, M., Lazkoz, R., Rozas-Fernandez, A.: Phenomenological models for Unified Dark Matter with fast transition. Mon. Not. Roy. Astron. Soc. 431, 2907 (2013). arXiv:1210.1880

    Article  ADS  MATH  Google Scholar 

  54. Akarsu, O., Barrow, J.D., Escamilla, L.A., Vazquez, J.A.: Graduated dark energy: observational hints of a spontaneous sign switch in the cosmological constant. arXiv:1912.08751

  55. Cattoen, C., Visser, M.: The Hubble series: Convergence properties and redshift variables. Class. Quant. Grav. 24, 5985–5998 (2007). arXiv:0710.1887

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. Dunsby, P.K.S., Luongo, O.: On the theory and applications of modern cosmography. Int. J. Geom. Meth. Mod. Phys. 13, 1630002 (2016). arXiv:1511.06532

    Article  MathSciNet  MATH  Google Scholar 

  57. García-Aspeitia, M.A., Martínez-Robles, C., Hernández-Almada, A., Magaña, J., Motta, V.: Cosmic acceleration in unimodular gravity. Phys. Rev. D 99, 123525 (2019). arXiv:1903.06344

    Article  ADS  MathSciNet  Google Scholar 

  58. Riess, A.G., et al.: Type Ia supernova distances at redshift \(>\) 1.5 from the Hubble Space Telescope multi-cycle treasury programs: the early expansion rate. Astrophys. J. 853, 126 (2018). arXiv:1710.00844

    Article  ADS  Google Scholar 

  59. Camarena, D., Marra, V.: Local determination of the Hubble constant and the deceleration parameter, arXiv:1906.11814

  60. Camarena, D., Marra, V.: A new method to build the (inverse) distance ladder. arXiv:1910.14125

  61. Colgáin, E.Ó.: A hint of matter underdensity at low z? JCAP 09, 006 (2019). arXiv:1903.11743

    Article  ADS  Google Scholar 

  62. Lusso, E., Piedipalumbo, E., Risaliti, G., Paolillo, M., Bisogni, S., Nardini, E., Amati, L.: Tension with the flat \(\Lambda \)CDM model from a high-redshift Hubble diagram of supernovae, quasars, and gamma-ray bursts. Astron. Astrophys. 628, L4 (2019). arXiv:1907.07692

    Article  ADS  Google Scholar 

  63. Yang, T., Banerjee, A., Colgáin, E. O.: On cosmography and flat \(\Lambda \)CDM tensions at high redshift. arXiv:1911.01681

  64. Velten, H., Gomes, S.: Is the Hubble diagram of quasars in tension with concordance cosmology?. arXiv:1911.11848

  65. Fukugita, M., Hogan, C.J., Peebles, P.J.E.: The Cosmic baryon budget. Astrophys. J. 503, 518 (1998). arXiv:astro-ph/9712020

    Article  ADS  Google Scholar 

  66. Nicastro, F., et al.: Observations of the missing Baryons in the warm-hot intergalactic medium arXiv:1806.08395 [Nature558,406(2018)]

  67. Bregman, J.N., Anderson, M.E., Miller, M.J., Hodges-Kluck, E., Dai, X., Li, J.-T., Li, Y., Qu, Z.: The extended distribution of Baryons around galaxies. Astrophys. J. 862, 3 (2018)

    Article  ADS  Google Scholar 

  68. García-Aspeitia, M.A., Hernández-Almada, A., Magaña, J., Motta, V.: On the birth of the cosmological constant and the reionization era. arXiv:1912.07500

Download references

Acknowledgements

We thank Marco de Cesare and Violaine Ponsin for help with the figures, and E.W.-E. thanks Aix-Marseille Université for hospitality during the initial stages of this work. E.W.-E. is supported in part by the Natural Science and Engineering Research Council of Canada and by a Harrison McCain Foundation Young Scholars Award. D.S. acknowledges partial financial support from PAPIIT-UNAM, Mexico (Grant No. IG100120); the Foundational Questions Institute (Grant No. FQXi-MGB-1928); and the Fetzer Franklin Fund, a donor advised by the Silicon Valley Community Foundation. D.S. acknowledges partial financial support from PAPIIT-UNAM, (México) Grant No. IG100120; CONACYT ( México) project “Frontiers of Science” No 140630; the Foundational Questions Institute (Grant No. FQXi-MGB-1928); and the Fetzer Franklin Fund, a donor advised by the Silicon Valley Community Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro Perez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perez, A., Sudarsky, D. & Wilson-Ewing, E. Resolving the \(H_0\) tension with diffusion. Gen Relativ Gravit 53, 7 (2021). https://doi.org/10.1007/s10714-020-02781-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-020-02781-0

Keywords

Navigation