Skip to main content
Log in

Taguchi- Grey Theory Based Harmony Search Algorithm (GR-HSA) for Predictive Modeling and Multi-Objective Optimization in Drilling of Polymer Composites

  • Research paper
  • Published:
Experimental Techniques Aims and scope Submit manuscript

Abstract

This paper deals with a new hybridization methodology of Grey integrated Harmony search algorithm (GR-HSA) for predictive modeling. Simultaneously, parametric optimization during drilling of Graphite reinforced epoxy composites using the TiAlN coated SiC drill. Three process constraints namely spindle speed (N), feed (F), and wt.% of Graphite (G%), varied at four discrete levels, and Taguchi-based L16 orthogonal array used for experimentation. Machining performance is considered as material removal rate (MRR), thrust force (Th), torque (T), and surface roughness (Ra). A statistical model was established between input and output functions. Multiple performances are aggregated into an objective function known as Grey relation grade (GRG). Non-linear regression analysis inveterates the fitness function to the implementation of the Harmony search algorithm. The outcome revealed that the GR-HSA module shows the higher application potential with an improvement of 3.55% over the traditional GRA-Taguchi method. Further, high resolution scanning analysis was made to evaluate the quality of the drilled hole. The results inferred that spindle speed in the case of GR-HSA (2500 rpm) increases the temperature between the machining interface, which softens the polymeric material of the machining zone. This, in turn, gives a lower value of thrust force with improved surface finishing. The results of the scanning test demonstrate the feasibility of the GR-HSA hybrid method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

GRA:

Grey Relation Analysis

GRC:

Grey Relation Coefficient

GRG:

Grey Relation Grade

GFRP:

Glass fiber reinforced polymer

FRP:

Fiber reinforced polymer

HSA:

Harmony Search Algorithm

GR-HSA:

Grey Relation-Harmony Search Algorithm

N:

Spindle Speed

F:

Feed

G%:

wt.% of Graphite

MRR:

Material Removal Rate

Th:

Thrust Force

T:

Torque Force

Ra:

Surface Roughness

ANOVA:

Analysis of Variance

MPI:

Multi Performance Index

GA:

Genetic Algorithm

SA:

Simulation Annealing

PSO:

Particle Swarm Optimisation

ABC:

Artificial Bee Colony

Wt.%:

Weight percentage

ATR IR:

Attenuated Total Reflection internally reflected

DSC:

Differential scanning calorimetry

PCL poly:

Polycaprolactone polymer

OH:

Hydrogen Oxide

GrlBi:

Bismaleimide graphite fiber

RSM:

Response surface methodology

DFA:

Desirability Function Analysis

OA:

Orthogonal Array

DDM:

Diamino Diphenyl Sulfone

MPa:

Mega Pascal

min:

Minute

mm:

Milli meter

CNC:

Computer Numerical Control

Nm:

Newton Meter

N:

Newton

LB:

Lower is Better

HB:

Higher is Better

S/N:

Signal to Noise

N :

Normalize

References

  1. Abhishek K, Datta S, Mahapatra SS (2016) Multi-objective optimization in drilling of CFRP (polyester) composites: application of a fuzzy embedded harmony search (HS) algorithm. Meas J Int Meas Confed. 77:222–239. https://doi.org/10.1016/j.measurement.2015.09.015

    Article  Google Scholar 

  2. Rajmohan T (2019) Experimental investigation and optimization of machining parameters in drilling of fly ash-filled carbon fiber reinforced composites. Part Sci Technol 37:21–30. https://doi.org/10.1080/02726351.2016.1205686

    Article  CAS  Google Scholar 

  3. Mohammed A, Al-Saadi NTK, Al-Mahaidi R (2018) Assessing the contribution of the CFRP strip of bearing the applied load using near-surface mounted strengthening technique with innovative high-strength self-compacting cementitious adhesive (IHSSC-CA). Polymers (Basel). 10. https://doi.org/10.3390/polym10010066

  4. Myagkov LL, Mahkamov K, Chainov ND, Makhkamova I.: Advanced and conventional internal combustion engine materials, (2014)

    Book  Google Scholar 

  5. Nonobe Y (2017) Development of the fuel cell vehicle mirai. IEEJ Trans Electr Electron Eng 12:5–9. https://doi.org/10.1002/tee.22328

    Article  CAS  Google Scholar 

  6. Feng Y, Dong HCX, Jinping Q, Hezhi He BX, YZ (2016) Polyvinyl Alcohol-Modified Pithecellobium Clypearia Benth Herbal Residue Fiber/Polypropylene Composites. Polym Polym Compos 16:101–113. https://doi.org/10.1002/pc.23250

  7. Stewart R (2009) Lightweighting the automotive market. Reinf Plast 53(14–16):18–19,21. https://doi.org/10.1016/S0034-3617(09)70078-5

    Article  Google Scholar 

  8. Xu J, El Mansori M (2016) Numerical studies of frictional responses when cutting hybrid CFRP/Ti composite. Int J Adv Manuf Technol 87:657–675. https://doi.org/10.1007/s00170-016-8512-9

    Article  Google Scholar 

  9. Fan H, Wang L, Zhao K et al (2010) Fabrication, mechanical properties, and biocompatibility of graphene-reinforced chitosan composites. Biomacromolecules. 11:2345–2351. https://doi.org/10.1021/bm100470q

    Article  CAS  Google Scholar 

  10. Badiger PV, Desai V, Ramesh MR et al (2019) Cutting Forces, Surface Roughness and Tool Wear Quality Assessment Using ANN and PSO Approach During Machining of MDN431 with TiN/AlN-Coated Cutting Tool. Arab J Sci Eng 44:7465–7477. https://doi.org/10.1007/s13369-019-03783-0

    Article  CAS  Google Scholar 

  11. Sengupta R, Bhattacharya M, Bandyopadhyay S, Bhowmick AK (2011) A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites. Prog Polym Sci 36:638–670. https://doi.org/10.1016/j.progpolymsci.2010.11.003

    Article  CAS  Google Scholar 

  12. Bhatnagar N, Singh I, Nayak D (2004) Damage investigation in drilling of glass fiber reinforced plastic composite laminates. Mater Manuf Process 19:995–1007. https://doi.org/10.1081/AMP-200034486

    Article  CAS  Google Scholar 

  13. Xu Z, Zhang Q, Shi X et al (2015) Comparison of Tribological Properties of NiAl Matrix Composites Containing Graphite , Carbon Nanotubes , or Graphene. J Mater Eng Perform 24:1926–1936. https://doi.org/10.1007/s11665-015-1482-5

    Article  CAS  Google Scholar 

  14. Xie L, Chen L, Huang X (2019) Effect of graphite addition on impregnated diamond bit properties 1. J Superhard Mater 41:237–246. https://doi.org/10.3103/S106345761904004X

    Article  Google Scholar 

  15. Kumari S, Kumar A, Kumar Yadav R, Vivekananda K (2018) Optimisation of machining parameters using Grey relation analysis integrated with harmony search for turning of AISI D2 steel. Mater Today Proc. 5:12750–12756. https://doi.org/10.1016/j.matpr.2018.02.259

    Article  CAS  Google Scholar 

  16. Krishnaraj V, Prabukarthi A, Ramanathan A et al (2012) Optimization of machining parameters at high speed drilling of carbon fiber reinforced plastic (CFRP) laminates. Compos Part B Eng. 43:1791–1799. https://doi.org/10.1016/j.compositesb.2012.01.007

    Article  Google Scholar 

  17. Krishnamoorthy A, Rajendra Boopathy S, Palanikumar K, Paulo DJ (2012) Application of grey fuzzy logic for the optimization of drilling parameters for CFRP composites with multiple performance characteristics. Meas J Int Meas Confed. 45:1286–1296. https://doi.org/10.1016/j.measurement.2012.01.008

    Article  Google Scholar 

  18. Kim I, Jeong YGYU (2010) Polylactide / Exfoliated Graphite Nanocomposites with Enhanced Thermal Stability , Mechanical Modulus , and Electrical Conductivity. J Polym Sci Part B Polym Phys 48:850–858. https://doi.org/10.1002/polb.21956

    Article  CAS  Google Scholar 

  19. Khashaba UA, El-Sonbaty IA, Selmy AI, Megahed AA (2010) Machinability analysis in drilling woven GFR/epoxy composites: part II - effect of drill wear. Compos Part A Appl Sci Manuf 41:1130–1137. https://doi.org/10.1016/j.compositesa.2010.04.011

    Article  CAS  Google Scholar 

  20. Palanikumar K (2010) Modeling and analysis of delamination factor and surface roughness in drilling GFRP composites. Mater Manuf Process 25:1059–1067. https://doi.org/10.1080/10426910903575830

    Article  CAS  Google Scholar 

  21. Ganguli S, Roy AK, Anderson DP (2008) Improved thermal conductivity for chemically functionalized exfoliated graphite/epoxy composites. Carbon N Y 46:806–817. https://doi.org/10.1016/j.carbon.2008.02.008

    Article  CAS  Google Scholar 

  22. Verma RK, Pal PK, Kandpal BC.: Machining performance optimization in drilling of GFRP composites: A utility theory (UT) based approach. ICCCCM 2016 - 2nd IEEE Int Conf Control Comput Commun Mater. 1–5, (2017). https://doi.org/10.1109/ICCCCM.2016.7918255

  23. Khashaba UA (2013) Drilling of polymer matrix composites: a review. J Compos Mater 47:1817–1832. https://doi.org/10.1177/0021998312451609

    Article  Google Scholar 

  24. Singaravel B, Shekar KC, Reddy GG, Prasad SD (2020) Experimental investigation of vegetable oil as dielectric fluid in electric discharge machining of Ti-6Al-4V. Ain Shams Eng J 11:143–147. https://doi.org/10.1016/j.asej.2019.07.010

    Article  Google Scholar 

  25. Hansda S, Banerjee S (2014) Optimizing multi characteristics in drilling of GFRP composite using utility concept with Taguchi’s approach. Procedia Mater Sci 6:1476–1488. https://doi.org/10.1016/j.mspro.2014.07.127

    Article  CAS  Google Scholar 

  26. Feng C, Ni H, Chen J, Yang W (2016) Facile method to fabricate highly thermally conductive graphite/PP composite with network structures. ACS Appl Mater Interfaces 8:19732–19738. https://doi.org/10.1021/acsami.6b03723

    Article  CAS  Google Scholar 

  27. Rzeczkowski P, Krause B, Pötschke P (2019) Characterization of highly filled PP/graphite composites for adhesive joining in fuel cell applications. Polymers (Basel) 11. https://doi.org/10.3390/polym11030462

  28. Sarikanat M, Sever K, Erbay E et al (2011) Preparation and mechanical properties of graphite filled HDPE nanocomposites. Arch Mater Sci Eng 50:120–124

    Google Scholar 

  29. Bensalah H, Gueraoui K, Essabir H et al (2017) Mechanical, thermal, and rheological properties of polypropylene hybrid composites based clay and graphite. J Compos Mater 51:3563–3576. https://doi.org/10.1177/0021998317690597

    Article  CAS  Google Scholar 

  30. Thirukkumaran K, Menaka M, Mukhopadhyay CK, Venkatraman B (2020) A study on temperature rise, tool Wear, and surface roughness during Drilling of Al–5%SiC composite. Arab J Sci Eng 45:5407–5419. https://doi.org/10.1007/s13369-020-04427-4

    Article  CAS  Google Scholar 

  31. Kumar PA, Das R, Sahoo AK, Routara BC (2014) Optimization of Cutting Parameters for Surface Roughness in Machining of gfrp Composites with Graphite/fly Ash Filler. Procedia Mater Sci 6:1533–1538. https://doi.org/10.1016/j.mspro.2014.07.134

    Article  CAS  Google Scholar 

  32. Uysal A (2018) Evaluation of drilling parameters on surface roughness and burr when drilling carbon black reinforced high-density polyethylene. J Compos Mater 52:2719–2727. https://doi.org/10.1177/0021998317752505

    Article  CAS  Google Scholar 

  33. Al-wandi S, Ding S, Mo J (2017) An approach to evaluate delamination factor when drilling carbon fiber-reinforced plastics using different drill geometries: experiment and finite element study. Int J Adv Manuf Technol 93:4043–4061. https://doi.org/10.1007/s00170-017-0880-2

    Article  Google Scholar 

  34. Guo DM, Wen Q, Gao H, Bao YJ (2012) Prediction of the cutting forces generated in the drilling of carbon-fibre-reinforced plastic composites using a twist drill. Proc Inst Mech Eng Part B J Eng Manuf 226:28–42. https://doi.org/10.1177/0954405411419128

    Article  CAS  Google Scholar 

  35. Wang DH, Ramulu M, Arola D.: Orthogonal cutting mechanisms of graphite/epoxy composite. Part I: unidirectional laminate. Int J Mach Tools Manuf. 35, 1623–1638, (1995). https://doi.org/10.1016/0890-6955(95)00014-O

  36. Voss R, Seeholzer L, Kuster F, Wegener K (2017) Influence of fibre orientation, tool geometry and process parameters on surface quality in milling of CFRP. CIRP J Manuf Sci Technol 18:75–91. https://doi.org/10.1016/j.cirpj.2016.10.002

    Article  Google Scholar 

  37. Wang X, Melly SK, Li N et al (2020) Helical milling response of glass fiber-reinforced polymer composite with carbon nanotube buckypaper interlayer. Polym Polym Compos 28:378–387. https://doi.org/10.1177/0967391119879296

    Article  CAS  Google Scholar 

  38. Uzun G (2019) Analysis of grey relational method of the effects on machinability performance on austempered vermicular graphite cast irons. Meas J Int Meas Confed. 142:122–130. https://doi.org/10.1016/j.measurement.2019.04.059

    Article  Google Scholar 

  39. Antil P, Singh S, Manna A (2018) Electrochemical discharge drilling of SiC reinforced polymer matrix composite using Taguchi’s Grey relational analysis. Arab J Sci Eng 43:1257–1266. https://doi.org/10.1007/s13369-017-2822-6

    Article  CAS  Google Scholar 

  40. Meena RK, Jain M, Sanga SS, Assad A (2019) Fuzzy modeling and harmony search optimization for machining system with general repair, standby support and vacation. Appl Math Comput 361:858–873. https://doi.org/10.1016/j.amc.2019.05.053

    Article  Google Scholar 

  41. Yildiz AR (2012) A new hybrid particle swarm optimization approach for structural design optimization in the automotive industry. Proc Inst Mech Eng Part D J Automob Eng 226:1340–1351. https://doi.org/10.1177/0954407012443636

    Article  Google Scholar 

  42. Samiee M, Amjady N, Sharifzadeh H (2013) Security constrained unit commitment of power systems by a new combinatorial solution strategy composed of enhanced harmony search algorithm and numerical optimization. Int J Electr Power Energy Syst 44:471–481. https://doi.org/10.1016/j.ijepes.2012.07.069

    Article  Google Scholar 

  43. Abdelhafeez Hassan A, Li MJ, Mahmoud S (2020) On miniature hole quality and tool Wear when mechanical Drilling of Mild Steel. Arab J Sci Eng. https://doi.org/10.1007/s13369-020-04549-9

  44. Shanmughasundaram P, Subramanian R (2014) Study of parametric optimization of burr formation in step drilling of eutectic Al-Si alloy-gr composites. J Mater Res Technol 3:150–157. https://doi.org/10.1016/j.jmrt.2014.03.008

    Article  CAS  Google Scholar 

  45. Palanikumar K, Muniaraj A.: Experimental investigation and analysis of thrust force in drilling cast hybrid metal matrix ( Al – 15% SiC – 4% graphite ) composites. measurement. 53, 240–250, (2014). https://doi.org/10.1016/j.measurement.2014.03.027

  46. Palanikumar K (2011) Experimental investigation and optimisation in drilling of GFRP composites. Meas J Int Meas Confed 44:2138–2148. https://doi.org/10.1016/j.measurement.2011.07.023

    Article  Google Scholar 

  47. Tsao CC (2008) Thrust force and delamination of core-saw drill during drilling of carbon fiber reinforced plastics (CFRP). Int J Adv Manuf Technol 37:23–28. https://doi.org/10.1007/s00170-007-0963-6

    Article  Google Scholar 

  48. Velayudham A, Krishnamurthy R (2007) Effect of point geometry and their influence on thrust and delamination in drilling of polymeric composites. J Mater Process Technol 185:204–209. https://doi.org/10.1016/j.jmatprotec.2006.03.146

    Article  CAS  Google Scholar 

  49. Campos Rubio J, Abrao AM, Faria PE et al (2008) Effects of high speed in the drilling of glass fibre reinforced plastic: evaluation of the delamination factor. Int J Mach Tools Manuf 48:715–720. https://doi.org/10.1016/j.ijmachtools.2007.10.015

    Article  Google Scholar 

  50. Wei Y, An Q, Ming W, Chen M (2016) Effect of drilling parameters and tool geometry on drilling performance in drilling carbon fiber-reinforced plastic/titanium alloy stacks. Adv Mech Eng 8:1–16. https://doi.org/10.1177/1687814016670281

    Article  CAS  Google Scholar 

  51. Zitoune R, Krishnaraj V, Sofiane Almabouacif B et al (2012) Influence of machining parameters and new nano-coated tool on drilling performance of CFRP/Aluminium sandwich. Compos Part B Eng 43:1480–1488. https://doi.org/10.1016/j.compositesb.2011.08.054

    Article  CAS  Google Scholar 

  52. Kumar D, Singh KK (2019) Investigation of delamination and surface quality of machined holes in drilling of multiwalled carbon nanotube doped epoxy/carbon fiber reinforced polymer nanocomposite. Proc Inst Mech Eng Part L J Mater Des Appl 233:647–663. https://doi.org/10.1177/1464420717692369

    Article  CAS  Google Scholar 

  53. Gemi L, Morkavuk S, Köklü U, Gemi DS (2019) An experimental study on the effects of various drill types on drilling performance of GFRP composite pipes and damage formation. Compos Part B Eng. 172:186–194. https://doi.org/10.1016/j.compositesb.2019.05.023

    Article  Google Scholar 

  54. Xu J, Li C, Chen M et al (2019) On the analysis of temperatures , surface morphologies and tool wear in drilling CFRP / Ti6Al4V stacks under different cutting sequence strategies. Compos Struct 111708. https://doi.org/10.1016/j.compstruct.2019.111708

  55. Heidary H, Karimi NZ, Minak G (2018) Investigation on delamination and flexural properties in drilling of carbon nanotube/polymer composites. Compos Struct 201:112–120. https://doi.org/10.1016/j.compstruct.2018.06.041

    Article  Google Scholar 

  56. Xu J, El Mansori M (2016) Experimental study on drilling mechanisms and strategies of hybrid CFRP / Ti stacks. Compos Struct. https://doi.org/10.1016/j.compstruct.2016.07.025

  57. Raj Kumar D, Jeyaprakash N, Yang CH, Ramkumar KR (2020) Investigation on drilling behavior of CFRP composites using optimization technique. Arab J Sci Eng. https://doi.org/10.1007/s13369-020-04649-6

  58. Stone R, Krishnamurthy K (1996) A neural network thrust force controller to minimize delamination during drilling of graphite-epoxy laminates. Int J Mach Tools Manuf 36:985–1003. https://doi.org/10.1016/0890-6955(96)00013-2

    Article  Google Scholar 

  59. El-Sonbaty I, Khashaba UA, Machaly T (2004) Factors affecting the machinability of GFR/epoxy composites. Compos Struct 63:329–338. https://doi.org/10.1016/S0263-8223(03)00181-8

    Article  Google Scholar 

  60. Ramirez C, Poulachon G, Rossi F, M’Saoubi R (2014) Tool wear monitoring and hole surface quality during CFRP drilling. Procedia CIRP 13:163–168. https://doi.org/10.1016/j.procir.2014.04.028

    Article  Google Scholar 

  61. Mohan NS, Ramachandra A, Kulkarni SM (2005) Influence of process parameters on cutting force and torque during drilling of glass-fiber polyester reinforced composites. Compos Struct 71:407–413. https://doi.org/10.1016/j.compstruct.2005.09.039

    Article  Google Scholar 

  62. Abrão AM, Faria PE, Rubio JCC et al (2007) Drilling of fiber reinforced plastics: a review. J Mater Process Technol 186:1–7. https://doi.org/10.1016/j.jmatprotec.2006.11.146

    Article  CAS  Google Scholar 

  63. Paul Theophilus Rajakumar I, Hariharan P, Srikanth I (2013) A study on monitoring the drilling of polymeric nanocomposite laminates using acoustic emission. J Compos Mater 47:1773–1784. https://doi.org/10.1177/0021998312451299

    Article  Google Scholar 

  64. Gupta M, Kumar S (2015) Investigation of surface roughness and MRR for turning of UD-GFRP using PCA and Taguchi method. Eng Sci Technol an Int J 18:70–81. https://doi.org/10.1016/j.jestch.2014.09.006

    Article  Google Scholar 

  65. Ogawa K, Aoyama E, Inoue H et al (1997) Investigation on cutting mechanism in small diameter drilling for GFRP (thrust force and surface roughness at drilled hole wall). Compos Struct 38:343–350. https://doi.org/10.1016/S0263-8223(97)00069-X

    Article  Google Scholar 

  66. Mohan NS, Kulkarni SM (2018) Influence of drilling parameters on torque during drilling of GFRP composites using response surface methodology. J Phys Conf Ser 953. https://doi.org/10.1088/1742-6596/953/1/012031

  67. Li W, Dichiara A, Bai J (2013) Carbon nanotube-graphene nanoplatelet hybrids as high-performance multifunctional reinforcements in epoxy composites. Compos Sci Technol 74:221–227. https://doi.org/10.1016/j.compscitech.2012.11.015

    Article  CAS  Google Scholar 

  68. Yang H, Luo R, Han S, Li M (2010) Effect of the ratio of graphite/pitch coke on the mechanical and tribological properties of copper-carbon composites. Wear. 268:1337–1341. https://doi.org/10.1016/j.wear.2010.02.007

    Article  CAS  Google Scholar 

  69. He R, Chang Q, Huang X, bo J (2018) Improved mechanical properties of carbon fiber reinforced PTFE composites by growing graphene oxide on carbon fiber surface. Compos Interfaces 25:995–1004. https://doi.org/10.1080/09276440.2018.1451677

    Article  CAS  Google Scholar 

  70. Paper C, Seattle W (2015) An Experimental Investigation into Pitting of Hole Surfaces When Drilling Graphite / Epoxy Materials. https://doi.org/10.13140/2.1.2653.6320

    Book  Google Scholar 

  71. Sridharan V, Raja T, Muthukrishnan N (2016) Study of the effect of matrix, Fibre Treatment and Graphene on Delamination by Drilling Jute/Epoxy Nanohybrid Composite. Arab J Sci Eng 41:1883–1894. https://doi.org/10.1007/s13369-015-2005-2

    Article  Google Scholar 

  72. Khashaba UA (2004) Delamination in drilling GFR-thermoset composites. Compos Struct 63:313–327. https://doi.org/10.1016/S0263-8223(03)00180-6

    Article  Google Scholar 

  73. Zarei O, Fesanghary M, Farshi B et al (2008) Optimization of multi-pass face-milling via harmony search algorithm. J Mater Process Technol 9:2386–2392. https://doi.org/10.1016/j.jmatprotec.2008.05.029

    Article  CAS  Google Scholar 

  74. Jia X, Deng X, Su J (2012) Machining parameters optimization for form milling the gear using. Adv Mater Res 475:1809–1812. https://doi.org/10.4028/www.scientific.net/AMR.472-475.1809

    Article  Google Scholar 

  75. Farshbaf Zinati R, Razfar MR (2019) Multi-objective constrained optimization of turning process via modified harmony search algorithm. Iran J Sci Technol - Trans Mech Eng 43:375–382. https://doi.org/10.1007/s40997-017-0118-9

    Article  Google Scholar 

  76. Bhat R, Mohan N, Sharma S et al (2019) Multi-response optimization of the thrust force, torque and surface roughness in drilling of glass fiber reinforced polyester composite using GRA-RSM. Mater Today Proc 19:333–338. https://doi.org/10.1016/j.matpr.2019.07.608

    Article  CAS  Google Scholar 

  77. Shunmugesh K, Kavan P (2017) Investigation and optimization of machining parameters in drilling of carbon fiber reinforced polymer (CFRP) composites. Pigment Resin Technol 46:21–30. https://doi.org/10.1108/PRT-03-2016-0029

    Article  Google Scholar 

Download references

Acknowledgments

The authors are very thankful to the National Institute of Technical Teachers Training and Research, Kolkata, India, for affording all feasible help in carrying out this experimentation directly or indirectly.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R.K. Verma.

Ethics declarations

Conflicting Interests

The authors declared no potential conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, J., Verma, R. & Mondal, A. Taguchi- Grey Theory Based Harmony Search Algorithm (GR-HSA) for Predictive Modeling and Multi-Objective Optimization in Drilling of Polymer Composites. Exp Tech 45, 531–548 (2021). https://doi.org/10.1007/s40799-020-00428-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40799-020-00428-y

Keywords

Navigation