Skip to main content
Log in

Mercury in neonatal and juvenile blacktip sharks (Carcharhinus limbatus). Part I: exposure assessment

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Elasmobranchs are exposed to mercury (Hg) through a variety of pathways in the environment. This study assessed maternal offloading and diet-based Hg exposure for neonatal and juvenile blacktip sharks (Carcharhinus limbatus) from Charlotte Harbor located along southwest Florida’s coast, a recognized Hg hotspot. Neonates (n = 57) had highest total Hg (THg) concentrations in the kidney (0.56 ± 0.26 mg kg−1; n = 38) and muscle (0.53 ± 0.17 mg kg−1; n = 57), followed by liver (0.31 ± 0.11 mg kg−1; n = 38), and blood (0.05 ± 0.033 mg kg−1; n = 57). Juveniles (n = 13) exhibited a different distribution with highest THg in the liver (0.868 ± 0.54 mg kg−1; n = 6), followed by the muscle (0.84 ± 0.28 mg kg−1; n = 13), kidney (0.55 ± 0.22 mg kg−1; n = 6), and blood (0.11 ± 0.04 mg kg−1; n = 11). The distribution of THg among tissues and liver-to-muscle ratios indicated that Hg originated primarily from maternal offloading in neonates, whereas juveniles continued to accumulate Hg through dietary exposure post-parturition. Additionally, comparisons between results of the present study and previous Florida blacktip shark surveys suggested that Hg levels have not declined in southwest Florida estuaries for over two decades.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The raw data is available upon request. No plants, plant materials, or cell lines were used in this study—so plant reproducibility is not applicable.

Code availability

Not applicable.

References

  • Adams DH, McMichael RH Jr. (1999) Mercury levels in four species of sharks from the Atlantic coast of Florida. Fish Bull 97(2):372–379

    Google Scholar 

  • Adams DH, McMichael RH Jr. Henderson GE (2003) Mercury levels in marine and estuarine fishes of Florida 1989–2001. Florida Marine Research Institute Technical Reports, 2nd ed. rev. p 57

  • Basu N (2015) Applications and implications of neurochemical biomarkers in environmental toxicology. Environ Toxicol Chem 34(1):22–29

    Article  CAS  Google Scholar 

  • Bergés-Tiznado ME, Márquez-Farías F, Lara-Mendoza RE, Torres-Rojas YE, Galván-Magaña F, Bojórquez-Leyva H, Páez-Osuna F (2015) Mercury and selenium in muscle and target organs of scalloped hammerhead sharks Sphyrna lewini of the SE Gulf of California: dietary intake, molar ratios, loads, and human health risks. Arch Environ Contam Toxicol 69(4):440–452

    Article  Google Scholar 

  • Bethea DM, Buckel JA, Carlson JK (2004) Foraging ecology of the early life stages of four sympatric shark species. Mar Ecol Prog Ser 268:245–264

    Article  Google Scholar 

  • Brown L (1993) Anesthesia and restraint. Fish medicine. Philadelphia: WB Saunders, 81

  • Brumbaugh WG, Krabbenhoft DP, Helsel DR, Wiener JG, Echols KR (2001) A national pilot study of mercury contamination of aquatic ecosystems along multiple gradients: bioaccumulation in fish. Biol Sci Rep 9

  • Castro JI (1996) Biology of the blacktip shark, Carcharhinus limbatus, off the southeastern United States. Bull Mar Sci 59(3):508–522

    Google Scholar 

  • Cizdziel J, Hinners T, Cross C, Pollard J (2003) Distribution of mercury in the tissues of five species of freshwater fish from Lake Mead, USA. J Environ Monit 5(5):802–807

    Article  CAS  Google Scholar 

  • Compagno L (1984) Sharks of the world: an annotated and illustrated catalogue of shark species known to date: Vol 4, Part 2 Carchariniformes. Food and Agricultural Organization, United Nations, Rome

    Google Scholar 

  • Compeau G, Bartha R (1985) Sulfate-reducing bacteria: principal methylators of mercury in anoxic estuarine sediment. Appl Environ Microbiol 50(2):498–502

    Article  CAS  Google Scholar 

  • Cortés E (1999) Standardized diet compositions and trophic levels of sharks. ICES J Mar Sci 56(5):707–717

    Article  Google Scholar 

  • Delshad ST, Mousavi SA, Islami H, Pazira A (2012) Mercury concentration of the whitecheek shark, Carcharhinus dussumieri (Elasmobranchii, Chondrichthyes), and its relation with length and sex. Pan-Am J Aquat Sci 7:135–142

    Google Scholar 

  • Devlin EW (2006) Acute toxicity, uptake and histopathology of aqueous methyl mercury to fathead minnow embryos. Ecotoxicology 15(1):97–110

    Article  CAS  Google Scholar 

  • Dong W, Liu J, Wei L, Jingfeng Y, Chernick M, Hinton DE (2016) Developmental toxicity from exposure to various forms of mercury compounds in medaka fish (Oryzias latipes) embryos. PeerJ 4:e2282

    Article  Google Scholar 

  • Dudley S, Cliff G (1993) Sharks caught in the protective gill nets off Natal, South Africa. 7. The blacktip shark Carcharhinus limbatus (Valenciennes). South Afr J Mar Sci 13(1):237–254

    Article  Google Scholar 

  • Dulvy NK, et al. (2014) Extinction risk and conservation of the world’s sharks and rays. Elife, 3

  • Ehnert-Russo S, Gelsleichter J (2019) Mercury accumulation and effects in the brain of the Atlantic Sharpnose Shark (Rhizoprionodon terraenovae). Arch Environ Contam Toxicol 1–17

  • Fjeld E, Haugen T, Vøllestad L (1998) Permanent impairment in the feeding behavior of grayling (Thymallus thymallus) exposed to methylmercury during embryogenesis. Sci Total Environ 213(1–3):247–254

    Article  CAS  Google Scholar 

  • Florida Department of Health (2018) Advisory brochure. Your guide to eating fish caught in Florida (March 2018). http://www.floridahealth.gov/programs-and-services/prevention/healthy-weight/nutrition/seafood-consumption/_documents/advisory-brochure.pdf

  • Hall B, Bodaly R, Fudge R, Rudd J, Rosenberg D (1997) Food as the dominant pathway of methylmercury uptake by fish. Water, Air Soil Pollut 100(1–2):13–24

    Article  CAS  Google Scholar 

  • Harris R et al. (2012) Mercury in the Gulf of Mexico: sources to receptors. Environ Res 119:42–52

    Article  CAS  Google Scholar 

  • Heyes A, Mason RP, Kim EH, Sunderland E (2006) Mercury methylation in estuaries: Insights from using measuring rates using stable mercury isotopes. Mar Chem 102(1–2):134–147

    Article  CAS  Google Scholar 

  • Hueter RE, Manire CA (1994) Bycatch and catch-release mortality of small sharks in the Gulf coast nursery grounds of Tampa Bay and Charlotte Harbor. Mote Marine Laboratory, Sarasota, FL, p 183. https://dspace.mote.org/bitstream/2075/1591/1/MTR%20367.pdf

  • Hueter RE, Fong WG, Henderson G, French MF, Manire CA (1995) Methylmercury concentration in shark muscle by species, size and distribution of sharks in Florida coastal waters. Mercury as a global pollutant (pp 893–899): Springer

  • Hueter RE, Tyminski JP (2002) US shark nursery research overview, Center for Shark Research, Mote Marine Laboratory 1991–2001. https://dspace.mote.org/bitstream/2075/142/4/MTR%20816.pdf

  • Hurtado-Banda R, Gomez-Alvarez A, Márquez-Farías JF, Cordoba-Figueroa M, Navarro-García G, Medina-Juárez LÁ (2012) Total mercury in liver and muscle tissue of two coastal sharks from the northwest of Mexico. Bull Environ Contam Toxicol 88(6):971–975

    Article  CAS  Google Scholar 

  • Kidd K, Clayden M, Jardine T (2012) Bioaccumulation and biomagnification of mercury through food webs. In G Liu, Y Cai, & N O’Driscoll (Eds), Environmental chemistry and toxicology of mercury, John Wiley & Sons Inc, 455–499

  • Lyons K, Carlisle A, Preti A, Mull C, Blasius M, O’Sullivan J, Winkler C, Lowe CG (2013a) Effects of trophic ecology and habitat use on maternal transfer of contaminants in four species of young of the year lamniform sharks. Mar Environ Res 90:27–38

    Article  CAS  Google Scholar 

  • Lyons K, Lowe CG, Gillanders B (2013b) Mechanisms of maternal transfer of organochlorine contaminants and mercury in the common thresher shark (Alopias vulpinus). Can J Fish Aquat Sci 70(12):1667–1672

    Article  CAS  Google Scholar 

  • Mason RP, Fitzgerald WF, Morel FM (1994) The biogeochemical cycling of elemental mercury: anthropogenic influences. Geochim Cosmochim Acta 58(15):3191–3198

    Article  CAS  Google Scholar 

  • Matta MB, Linse J, Cairncross C, Francendese L, Kocan RM (2001) Reproductive and transgenerational effects of methylmercury or Aroclor 1268 on Fundulus heteroclitus. Environ Toxicol Chem 20(2):327–335

    Article  CAS  Google Scholar 

  • Matulik AG, Kerstetter DW, Hammerschlag N, Divoll T, Hammerschmidt CR, Evers DC (2017) Bioaccumulation and biomagnification of mercury and methylmercury in four sympatric coastal sharks in a protected subtropical lagoon. Mar Pollut Bull 116(1):357–364

    Article  CAS  Google Scholar 

  • Moye HA, Miles CJ, Phlips EJ, Sargent B, Merritt KK (2002) Kinetics and uptake mechanisms for monomethylmercury between freshwater algae and water. Environ Sci Technol 36(16):3550–3555

    Article  CAS  Google Scholar 

  • Nam DH, Adams DH, Reyier EA, Basu N (2011) Mercury and selenium levels in lemon sharks (Negaprion brevirostris) in relation to a harmful red tide event. Environ Monit Assessment 176(1-4):549–559

    Article  CAS  Google Scholar 

  • Norris SB, Reistad NA, Rumbold DG (In this issue) Mercury in neonatal and blacktip sharks (Carcharhinus limbatus). Part II: Effects assessment. Ecotoxicology

  • O’Bryhim JR, Adams DH, Spaet JL, Mills G, Lance SL (2017) Relationships of mercury concentrations across tissue types, muscle regions and fins for two shark species. Environ Pollut 223:323–333

    Article  Google Scholar 

  • Pethybridge H, Cossa D, Butler EC (2010) Mercury in 16 demersal sharks from Southeast Australia: biotic and abiotic sources of variation and consumer health implications. Mar Environ Res 69(1):18–26

    Article  CAS  Google Scholar 

  • Pickhardt PC, Fisher NS (2007) Accumulation of inorganic and methylmercury by freshwater phytoplankton in two contrasting water bodies. Environ Sci Technol 41(1):125–131

    Article  CAS  Google Scholar 

  • Pickhardt PC, Stepanova M, Fisher NS (2006) Contrasting uptake routes and tissue distributions of inorganic and methylmercury in mosquitofish (Gambusia affinis) and redear sunfish (Lepomis microlophus). Environ Toxicol Chem 25(8):2132–2142

    Article  CAS  Google Scholar 

  • Prestbo EM, Gay DA (2009) Wet deposition of mercury in the US and Canada, 1996–2005: results and analysis of the NADP mercury deposition network (MDN). Atmos Environ 43(27):4223–4233

    Article  CAS  Google Scholar 

  • Rumbold DG, Evans DW, Niemczyk S, Fink LE, Laine KA, Howard N, Krabbenhoft DP, Zucker M (2011) Source identification of Florida Bay’s methylmercury problem: mainland runoff versus atmospheric deposition and in situ production. Estuaries Coasts 34(3):494–513

    Article  CAS  Google Scholar 

  • Rumbold DG, Lange TR, Richards D, DelPizzo G, Haas NA (2018) Mercury concentrations and ratios of stable isotopes of nitrogen and carbon in food webs of the Caloosahatchee Estuary, Florida. Florida Sci 81(4):105–112

    CAS  Google Scholar 

  • Rumbold DG, Wasno R, Hammerschlag N, Volety A (2014) Mercury accumulation in sharks from the coastal waters of Southwest Florida. Arch Environ Contam Toxicol 67(3):402–412

    Article  CAS  Google Scholar 

  • Slemr F, Langer E (1992) Increase in global atmospheric concentrations of mercury inferred from measurements over the Atlantic Ocean. Nature 355:434–437

    Article  CAS  Google Scholar 

  • Southworth GR, Peterson MJ, Bogle MA (2004) Bioaccumulation factors for mercury in stream fish. Environ Pract 6(2):135–143

    Article  Google Scholar 

  • Stopford W, Goldwater L (1975) Methylmercury in the environment: a review of current understanding. Environ Health Perspect 12:115

    Article  CAS  Google Scholar 

  • Storelli M, Ceci E, Storelli A, Marcotrigiano G (2003) Polychlorinated biphenyl, heavy metal and methylmercury residues in hammerhead sharks: contaminant status and assessment. Mar Pollut Bull 46(8):1035–1039

    Article  CAS  Google Scholar 

  • Thera JC, Rumbold DG (2014) Biomagnification of mercury through a subtropical coastal food web off Southwest Florida. Environm Toxicol Chem 33(1):65–73

    Article  CAS  Google Scholar 

  • Tollefson L, Cordle F (1986) Methylmercury in fish: a review of residue levels, fish consumption and regulatory action in the United States. Environ Health Perspect 68:203

    Article  CAS  Google Scholar 

  • United States Environmental Protection Agency/United States Food and Drug Administration (2004) What you need to know about mercury in fish and shellfish. EPA-823-R-04-005. https://www.fda.gov/food/foodborneillnesscontaminants/metals/ucm351781.htm

  • van Hees KE, Ebert DA (2017) An evaluation of mercury offloading in two Central California elasmobranchs. Sci Tot Environ 590–591:154–162

    Article  Google Scholar 

  • Ward DM, Nislow KH, Chen CY, Folt CL (2010) Rapid, efficient growth reduces mercury concentrations in stream‐dwelling Atlantic Salmon. Trans Am Fish Soc 139(1):1–10

    Article  CAS  Google Scholar 

  • Watanabe N, Tayama M, Inouye M, Yasutake A (2012) Distribution and chemical form of mercury in commercial fish tissues. J Toixcol Sci 37(4):853–861

    Article  CAS  Google Scholar 

  • Wiener JG, Krabbenhoft DP, Heinz GH, Scheuhammer AM (2003) Chapter 16: ecotoxicology of mercury. In Hoffman DJ, Rattner BA, Burton GA Jr., Cairns J Jr. (Eds) Handbook of ecotoxicology, 2nd edn. CRC Press, Boca Raton, FL, pp 409–463

  • Xu Q, Zhao L, Wang Y, Xie Q, Yin D, Feng X, Wang D (2018) Bioaccumulation characteristics of mercury in fish in the Three Gorges Reservoir, China. Environ Pollut 243:115–126

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank all the FGCU students and volunteers that provided field support on this project including: J. Hemberger, M. Scroggin, E. Krueger, V. Miller, J. Knoer, T. Stiehl, and J. Forbes. We would also like to thank Drs. G. Tolley and J. Douglass for their advice on early drafts of this paper and especially Dr. C. Campbell for his guidance on procedures used in this project. We would also like to thank our reviewers for their professional insight and feedback. Finally, we would like to thank C. Reistad and D. Norris for their assistance and support through the sampling, analysis, and writing processes. Funding for this work was provided by an internal grant from Florida Gulf Coast University.

Author information

Authors and Affiliations

Authors

Contributions

All three authors participated in sample collection and processing; Ms. Reistad and Mrs. Norris were each responsible for different analytical procedures, data analysis and interpretations (i.e., different thesis). Dr. Rumbold provided mentorship.

Corresponding author

Correspondence to Nicole A. Reistad.

Ethics declarations

Conflict of interest

The authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Consent to participate

This research did not involve human subjects, so clinical trial registration is not applicable.

Consent for publication

The authors certify that this manuscript is our original unpublished work, has not been published elsewhere, and is not under consideration by another journal. All authors have approved the manuscript and agree with its submission.

Ethics approval

These collections were made under Florida Fish and Wildlife Conservation Commission Special Activity License SAL−15−1347A-SRP and FGCU’s Institutional Animal Care and Use Committee (IACUC) Protocol #1516-10 titled “Effects of mercury on the health of Blacktip shark embryos, neonates and juveniles”.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reistad, N.A., Norris, S.B. & Rumbold, D.G. Mercury in neonatal and juvenile blacktip sharks (Carcharhinus limbatus). Part I: exposure assessment. Ecotoxicology 30, 187–197 (2021). https://doi.org/10.1007/s10646-020-02322-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-020-02322-0

Keywords

Navigation