Skip to main content
Log in

On the Falk Invariant of Shi and Linial Arrangements

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

It is an open question to give a combinatorial interpretation of the Falk invariant of a hyperplane arrangement, i.e., the third rank of successive quotients in the lower central series of the fundamental group of the arrangement. In this article, we give a combinatorial formula for this invariant in the case of hyperplane arrangements that are complete lift representations of certain gain graphs. As a corollary, we compute the Falk invariant for the cone of the braid, Shi, Linial, and semiorder arrangements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bondy, J.A., Murty, U.S.R.: Graph Theory. Graduate Texts in Mathematics, vol. 244. Springer, New York (2008)

    Google Scholar 

  2. Falk, M.: On the algebra associated with a geometric lattice. Adv. Math. 80(2), 152–163 (1990)

    Article  MathSciNet  Google Scholar 

  3. Falk, M.: Combinatorial and algebraic structure in Orlik–Solomon algebras. Eur. J. Combin. 22(5), 687–698 (2001)

    Article  MathSciNet  Google Scholar 

  4. Guo, Q., Guo, W., Hu, W., Jiang, G.: The global invariant of signed graphic hyperplane arrangements. Graphs Combin. 33(3), 527–535 (2017)

    Article  MathSciNet  Google Scholar 

  5. Guo, W., Guo, Q., Jiang, G.: Falk invariants of signed graphic arrangements. Graphs Combin. 34(6), 1247–1258 (2018)

    Article  MathSciNet  Google Scholar 

  6. Guo, W., Torielli, M.: On the Falk invariant of signed graphic arrangements. Graphs Combin. 34(3), 477–488 (2018)

    Article  MathSciNet  Google Scholar 

  7. Guo, W., Torielli, M.: On the Falk invariant of hyperplane arrangements attached to gain graphs. Australas. J. Combin. 77(3), 301–317 (2020)

    MathSciNet  MATH  Google Scholar 

  8. Orlik, P., Terao, H.: Arrangements of Hyperplanes. Grundlehren der Mathematischen Wissenschaften, vol. 300. Springer, Berlin (1992)

    MATH  Google Scholar 

  9. Palezzato, E., Torielli, M.: Hyperplane arrangements in CoCoA. J. Softw. Algebra Geom. 9(1), 43–54 (2019)

    Article  MathSciNet  Google Scholar 

  10. Palezzato, E., Torielli, M.: Lefschetz properties and hyperplane arrangements. J. Algebra 555, 289–304 (2020)

    Article  MathSciNet  Google Scholar 

  11. Palezzato, E., Torielli, M.: Localization of plus-one generated arrangements. Commun. Algebra (2020). https://doi.org/10.1080/00927872.2020.1798976

  12. Schenck, H.K., Suciu, A.I.: Lower central series and free resolutions of hyperplane arrangements. Trans. Am. Math. Soc. 354(9), 3409–3433 (2002)

    Article  MathSciNet  Google Scholar 

  13. Stanley, R.P.: An introduction to hyperplane arrangements. In: Geometric Combinatorics. IAS/Park City Math. Ser., vol. 13, pp. 389–496. Amer. Math. Soc., Providence (2007)

  14. Suyama, D., Torielli, M., Tsujie, S.: Signed graphs and the freeness of the Weyl subarrangements of type \(B_\ell \). Discrete Math. 342(1), 233–249 (2019)

    Article  MathSciNet  Google Scholar 

  15. Torielli, M., Palezzato, E.: Free hyperplane arrangements over arbitrary fields. J. Algebr. Comb. 52(2), 237–249 (2020)

  16. Torielli, M., Tsujie, S.: Freeness of hyperplane arrangements between Boolean arrangements and Weyl arrangements of type \(B_\ell \). Electron. J. Combin. 27(3), # P3.10 (2020)

  17. Tsujie, S.: Modular construction of free hyperplane arrangements. SIGMA 16, # 080 (2020)

    MathSciNet  MATH  Google Scholar 

  18. Zaslavsky, T.: Biased graphs. I. Bias, balance, and gains. J. Combin. Theory Ser. B 47(1), 32–52 (1989)

    Article  MathSciNet  Google Scholar 

  19. Zaslavsky, T.: Biased graphs. II. The three matroids. J. Combin. Theory Ser. B 51(1), 46–72 (1991)

    Article  MathSciNet  Google Scholar 

  20. Zaslavsky, T.: Biased graphs. IV. Geometrical realizations. J. Combin. Theory Ser. B 89(2), 231–297 (2003)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Torielli.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, W., Torielli, M. On the Falk Invariant of Shi and Linial Arrangements. Discrete Comput Geom 66, 751–768 (2021). https://doi.org/10.1007/s00454-020-00266-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-020-00266-0

Keywords

Mathematics Subject Classification

Navigation