Skip to main content
Log in

Comparison of the Structural Evolution of β Polypropylene during the Sequential and Simultaneous Biaxial Stretching Process

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

In this work, the lamellar structural evolution and microvoids variations of β polypropylene (β-PP) during the processing of two different stretching methods, sequential biaxial stretching and simultaneous biaxial stretching, were investigated in detail. It was found that different stretching methods led to significantly different lamellae deformation modes, and the microporous membranes obtained from the simultaneous biaxial stretching exhibited better mechanical properties. For the sequential biaxial stretching, abundant coarse fibers originated from the tight accumulation of the lamellae parallel to the longitudinal stretching direction, whereas the lamellae perpendicular to the stretching direction were easily deformed and separated. Those coarse fibers were difficult to be separated to form micropores during the subsequent transverse stretching process, resulting in a poor micropores distribution. However, for the simultaneous biaxial stretching, the β crystal had the same deformation mode, that is, the lamellae distributed in different directions were all destroyed, forming abundant microvoids and little coarse fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Costa, C. M.; Lee, Y. H.; Kim, J. H.; Lee, S. Y.; Lanceros-Méndez, S. Recent advances on separator membranes for lithium-ion battery applications: from porous membranes to solid electrolytes. Energy Storage Mater. 2019, 22, 346–375.

    Article  Google Scholar 

  2. Li, Y.; Pan, G.; Wang, J.; Zhang, Y.; Shi, H.; Yu, H.; Liu, Y. Tailoring the polyamide active layer of thin-film composite forward osmosis membranes with combined cosolvents during interfacial polymerization. Ind. Eng. Chem. Res. 2020, 59, 8230–8242.

    Article  CAS  Google Scholar 

  3. Pan, L.; Wang, H.; Wu, C.; Liao, C.; Li, L. Tannic-acid-coated polypropylene membrane as a separator for lithium-ion batteries. ACS Appl. Mater. Interfaces 2015, 7, 16003–16010.

    Article  CAS  PubMed  Google Scholar 

  4. Park, S. H.; Kwon, S. J.; Shin, M. G.; Park, M. S.; Lee, J. S.; Park, C. H.; Park, H.; Lee, J. H. Polyethylene-supported high performance reverse osmosis membranes with enhanced mechanical and chemical durability. Desalination 2018, 436, 28–38.

    Article  CAS  Google Scholar 

  5. Zhu, X.; Tang, X.; Luo, X.; Cheng, X.; Xu, D.; Gan, Z.; Wang, W.; Bai, L.; Li, G.; Liang, H. Toward enhancing the separation and antifouling performance of thin-film composite nanofiltration membranes: a novel carbonate-based preoccupation strategy. J. Colloid Interface Sci. 2020, 571, 155–165.

    Article  CAS  PubMed  Google Scholar 

  6. Lu, W.; Yuan, Z.; Zhao, Y.; Zhang, H.; Zhang, H.; Li, X. Porous membranes in secondary battery technologies. Chem. Soc. Rev. 2017, 46, 2199–2236.

    Article  CAS  PubMed  Google Scholar 

  7. Chu, F.; Kimura, Y. Structure and gas permeability of microporous films prepared by biaxial drawing of β-form polypropylene. Polymer 1996, 37, 573–579.

    Article  CAS  Google Scholar 

  8. Luo, B.; Li, Z.; Zhang, J.; Wang, X. Formation of anisotropic microporous isotactic polypropylene (iPP) membrane via thermally induced phase separation. Desalination 2008, 233, 19–31.

    Article  CAS  Google Scholar 

  9. Wu, T.; Xiang, M.; Cao, Y.; Kang, J.; Yang, F. Pore formation mechanism of β nucleated polypropylene stretched membranes. RSCAdv. 2014, 4, 36689–36701.

    CAS  Google Scholar 

  10. Wu, G. G.; Chen, W. B.; Ding, C.; Xu, L. Y.; Liu, Z. Y.; Yang, W.; Yang, M. B. Pore formation mechanism of oriented β polypropylene cast films during stretching and optimization of stretching methods: in situ SAXS and WAXD studies. Polyme 2019, 163, 86–95.

    Article  CAS  Google Scholar 

  11. Li, J. X.; Cheung, W. L.; Chan, C. M. On deformation mechanisms of β-polypropylene 2. Changes of lamellar structure caused by tensile load. Polymer 1999, 40, 2089–2102.

    Article  CAS  Google Scholar 

  12. Xu, R. J.; Chen, X. D.; Xie, J. Y.; Cai, Q.; Lei, C. H. Influence of melt-draw ratio on the crystalline structure and properties of polypropylene cast film and stretched microporous membrane. Ind. Eng. Chem. Res. 2015, 54, 2991–2999.

    Article  CAS  Google Scholar 

  13. Zeng, F.; Xu, R.; Ye, L.; Xiong, B.; Kang, J.; Xiang, M.; Li, L.; Sheng, X.; Hao, Z. Effects of heat setting on the morphology and performance of polypropylene separator for lithium ion batteries. Ind. Eng. Chem. Res. 2019, 58, 2217–2224.

    Article  CAS  Google Scholar 

  14. Lee, H.; Yanilmaz, M.; Toprakci, O.; Fu, K.; Zhang, X. A review of recent developments in membrane separators for rechargeable lithium-ion batteries. Energy Environ. Sci. 2014, 7, 3857–3886.

    Article  CAS  Google Scholar 

  15. Wu, G. G.; Ding, C.; Chen, W. B.; Zhang, Y.; Yang, W.; Yang, M. B. Effect of the content of β form crystals on biaxially stretched polypropylene microporous membranes and the tuning of pore structures. Polymer 2019, 175, 177–185.

    Article  CAS  Google Scholar 

  16. Zhang, D.; Ding, L.; Yang, F.; Lan, F.; Cao, Y.; Xiang, M. Effect of annealing on the microvoid formation and evolution during biaxial stretching of β nucleated isotactic polypropylene. Polymplast. Tech. Mater. 2020, 59, 1595–1607.

    CAS  Google Scholar 

  17. Zhang, C.; Liu, G.; Song, Y.; Zhao, Y.; Wang, D. Structural evolution of β-iPP during uniaxial stretching studied by in situ WAXS and SAXS. Polymer 2014, 55, 6915–6923.

    Article  CAS  Google Scholar 

  18. Xiande, C.; Ruijie, X.; Jiayi, X.; Yuanfei, L.; Caihong, L.; Liangbin, L. The study of room-temperature stretching of annealed polypropylene cast film with row-nucleated crystalline structure. Polymer 2016, 94, 31–42.

    Article  Google Scholar 

  19. Wu, G. G.; Xu, L. Y.; Chen, W. B.; Ding, C.; Liu, Z. Y.; Yang, W.; Yang, M. B. Oriented polypropylene cast films consisted of β-transcrystals induced by the nucleating agent self-assembly and its homogeneous membranes with high porosity. Polymer 2018, 151, 136–144.

    Article  CAS  Google Scholar 

  20. Sadeghi, F.; Ajji, A.; Carreau, P. J. Analysis of microporous membranes obtained from polypropylene films by stretching. J. Membr. Sci. 2007, 292, 62–71.

    Article  CAS  Google Scholar 

  21. Lyu, D.; Chen, R.; Lu, Y.; Men, Y. Subsequent but independent cavitation processes in isotactic polypropylene during stretching at small- and large-strain regimes. Ind. Eng. Chem. Res. 2018, 57, 8927–8937.

    Article  CAS  Google Scholar 

  22. Lin, Y.; Chen, W.; Meng, L.; Wang, D.; Li, L. Recent advances in post-stretching processing of polymer films with in situ synchrotron radiation X-ray scattering. Soft Matter 2020, 16, 3599–3612.

    Article  CAS  PubMed  Google Scholar 

  23. Li, S.; Zheng, G.; Jia, Z.; Zhang, Z.; Liu, C.; Chen, J.; Li, Q.; Shen, C.; Peng, X. Effect of stretching on β -phase content of isotactic polypropylene melt containing β-nucleating agent. J. Macromol. Sci. B 2011, 51, 828–838.

    Article  Google Scholar 

  24. Offord, G. T.; Armstrong, S. R.; Freeman, B. D.; Baer, E.; Hiltner, A.; Swinnea, J. S.; Paul, D. R. Porosity enhancement in β nucleated isotactic polypropylene stretched films by thermal annealing. Polymer 2013, 54, 2577–2589.

    Article  CAS  Google Scholar 

  25. Wu, T.; Xiang, M.; Cao, Y.; Yang, F. Influence of annealing on stress-strain behaviors and performances of β nucleated polypropylene stretched membranes. J. Polym. Res. 2014, 21.

  26. Yang, S.; Gu, J.; Yin, Y. A biaxial stretched β-isotactic polypropylene microporous membrane for lithium-ion batteries. J. Appl. Polym. Sci. 2018, 135, 45825.

    Article  Google Scholar 

  27. Yang, F.; Wu, T.; Xiang, M.; Cao, Y. Deformation and pore formation mechanism of β nucleated polypropylene with different supermolecular structures. Eur. Polym. J. 2017, 91, 134–148.

    Article  CAS  Google Scholar 

  28. Ding, L.; Ge, Q.; Xu, G.; Wu, T.; Yang, F.; Xiang, M. Influence of oriented β-lamellae on deformation and pore formation in β-nucleated polypropylene. J. Polym. Sci., Part B: Polym. Phys. 2017, 55, 1745–1759.

    Article  CAS  Google Scholar 

  29. Zhu, Y.; Zhao, Y.; Fu, Q. Toward uniform pore-size distribution and high porosity of isotactic polypropylene microporous membrane by adding a small amount of ultrafine full-vulcanized powder rubber. Polymer 2016, 103, 405–414.

    Article  CAS  Google Scholar 

  30. Bao, R.; Ding, Z.; Zhong, G.; Yang, W.; Xie, B.; Yang, M. Deformation-induced morphology evolution during uniaxial stretching of isotactic polypropylene: effect of temperature. Colloid Polym. Sci. 2012, 290, 261–274.

    Article  CAS  Google Scholar 

  31. Bao, R. Y.; Ding, Z. T.; Liu, Z. Y.; Yang, W.; Xie, B. H.; Yang, M. B. Deformation-induced structure evolution of oriented β-polypropylene during uniaxial stretching. Polymer 2013, 54, 1259–1268.

    Article  CAS  Google Scholar 

  32. Kurihara, H.; Kitade, S.; Ichino, K.; Akiba, I.; Sakurai, K. Elongation induced β- to α-crystalline transformation and microvoid formation in isotactic polypropylene as revealed by time-resolved WAXS/SAXS. Polym. J. 2018, 51, 199–209.

    Article  Google Scholar 

  33. Chen, Q.; Wang, Z.; Zhang, S.; Cao, Y.; Chen, J. Structure evolution and deformation behavior of polyethylene film during biaxial stretching. ACS Omega 2020, 5, 655–666.

    Article  CAS  PubMed  Google Scholar 

  34. Jariyasakoolroj, P.; Tashiro, K.; Wang, H.; Yamamoto, H.; Chinsirikul, W.; Kerddonfag, N.; Chirachanchai, S. Isotropically small crystalline lamellae induced by high biaxial-stretching rate as a key microstructure for super-tough polylactide film. Polymer 2015, 68, 234–245.

    Article  CAS  Google Scholar 

  35. Zhang, D.; Ding, L.; Yang, F.; Lan, F.; Cao, Y.; Xiang, M. Structural evolution of β-iPP with different supermolecular structures during the simultaneous biaxial stretching process. Polym. J. 2020, DOI: https://doi.org/10.1038/s41428-020-00430-6.

  36. Chen, Z.; Kang, W.; Kang, J.; Chen, J.; Yang, F.; Cao, Y.; Xiang, M. Non-isothermal crystallization behavior and melting behavior of Ziegler-Natta isotactic polypropylene with different stereodefect distribution nucleated with bi-component β-nucleation agent. Polym. Bull. 2015, 72, 3283–3303.

    Article  CAS  Google Scholar 

  37. Chen, X.; Lv, F.; Su, F.; Ji, Y.; Meng, L.; Wan, C.; Lin, Y.; Li, X.; Li, L. Deformation mechanism of iPP under uniaxial stretching over a wide temperature range: an in situ synchrotron radiation SAXS/WAXS study. Polymer 2017, 118, 12–21.

    Article  CAS  Google Scholar 

  38. Bai, H.; Wang, Y.; Zhang, Z.; Han, L.; Li, Y.; Liu, L.; Zhou, Z.; Men, Y. Influence of annealing on microstructure and mechanical properties of isotactic polypropylene with β-phase nucleating agent. Macromolecules 2009, 42, 6647–6655.

    Article  CAS  Google Scholar 

  39. Xiong, B.; Kang, J.; Chen, R.; Men, Y. Initiation of cavitation upon drawing of pre-oriented polypropylene film: in situ SAXS and WAXD studies. Polymer 2017, 128, 57–64.

    Article  CAS  Google Scholar 

  40. Jones, A. T.; Aizlewood, J. M.; Beckett, D. R. Crystalline forms of isotactic polypropylene. Makromol. Chem. 1964, 75, 134–158.

    Article  Google Scholar 

  41. Hermans, P. H.; Platzek, P. Beitrge zur Kenntnis des Deformationsmechanismus und der Feinstruktur der Hydratzellulose. Kolloid-Zeitschrift 1939, 88, 68–72.

    Article  CAS  Google Scholar 

  42. Lu, X.; Li, X. Preparation of polyvinylidene fluoride membrane via a thermally induced phase separation using a mixed diluent. J. Appl. Polym. Sci. 2009, 114, 1213–1219.

    Article  CAS  Google Scholar 

  43. Chen, Q.; Chen, D.; Kang, J.; Cao, Y.; Chen, J. Structure evolution of polyethylene in sequential biaxial stretching along the first tensile direction. Ind. Eng. Chem. Res. 2019, 58, 12419–12430.

    Article  CAS  Google Scholar 

  44. Fischer, S.; Diesner, T.; Rieger, B.; Marti, O. Simulating and evaluating small-angle X-ray scattering of micro-voids in polypropylene during mechanical deformation. J. Appl. Crystallogr. 2010, 43, 603–610.

    Article  CAS  Google Scholar 

  45. Thomas, C.; Ferreiro, V.; Coulon, G.; Seguela, R. In situ AFM investigation of crazing in polybutene spherulites under tensile drawing. Polymer 2007, 48, 6041–6048.

    Article  CAS  Google Scholar 

  46. Sun, W.; Chen, T.; Chen, C.; Li, J. A study on membrane morphology by digital image processing. J. Membr. Sci. 2007, 305, 93–102.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 51721091).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, DX., Ding, L., Yang, F. et al. Comparison of the Structural Evolution of β Polypropylene during the Sequential and Simultaneous Biaxial Stretching Process. Chin J Polym Sci 39, 620–631 (2021). https://doi.org/10.1007/s10118-021-2534-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-021-2534-y

Keywords

Navigation