Skip to main content
Log in

Isoselective Ring-opening Polymerization of Racemic Lactide Catalyzed by N-heterocyclic Olefin/(Thio)urea Organocatalysts

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

The isoselective ring-opening polymerization of racemic lactide was achieved by combining N-heterocyclic olefin (NHO) with mono(thio)ureas or bis(thio)ureas as catalytic systems. The polymerization process shows high stereoselectivity, controllability and reactivity, delivering multi-block isotactic polylactides with high chain-end fidelity and narrow molecular weight distributions. The enhancement of catalytic performance was observed in the following order: bisthiourea (DTU) < monothiourea (TU) < bisurea (DU) < urea (U). The highest Pm (probability of forming a meso dyad) = 0.91 was observed at −70 °C when using NHO/U1 catalytic system and the high stereoselectivity was attributed to chain-end control mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rangari, D.; Vasanthan, N. Study of strain-induced crystallization and enzymatic degradation of drawn poly(L-lactic acid) (PLLA) films. Macromolecules 2012, 45, 7397–7403.

    Article  CAS  Google Scholar 

  2. Drumright, R. E.; Gruber, P. R.; Henton, D. E. Polylactic acid technology. Adv. Mater. 2000, 12, 1841–1846.

    Article  CAS  Google Scholar 

  3. Wachsen, O.; Platkowski, K.; Reichert, K. H. Thermal degradation of poly-L-lactide—studies on kinetics, modelling and melt stabilisation. Polym. Degrad. Stabil. 1997, 57, 87–94.

    Article  CAS  Google Scholar 

  4. Dechy-Cabaret, O.; Martin-Vaca, B.; Bourissou, D. Controlled ring-opening polymerization of lactide and glycolide. Chem. Rev. 2004, 104, 6147–6176.

    Article  PubMed  CAS  Google Scholar 

  5. Tang, X. Y.; Chen, E. Y. X. Toward infinitely recyclable plastics derived from renewable cyclic esters. Chem 2019, 5, 284–312.

    Article  CAS  Google Scholar 

  6. Xu, G. Q.; Mahmood, Q.; Lv, C. D.; Yang, R. L.; Zhou, L.; Wang, Q. G. Asymmetric kinetic resolution polymerization. Coordin. Chem. Rev. 2020, 414, 213296.

    Article  CAS  Google Scholar 

  7. Nomura, N.; Hasegawa, J.; Ishii, R. A direct function relationship between isotacticity and melting temperature of multiblock stereocopolymer poly(rac-lactide). Macromolecules 2009, 42, 4907–4909.

    Article  CAS  Google Scholar 

  8. Orhan, B.; Tschan, M. J. L.; Wirotius, A. L.; Dove, A. P.; Coulembier, O.; Taton, D. Isoselective ring-opening polymerization of rac-lactide from chiral Takemoto’s organocatalysts: elucidation of stereocontrol. ACS Macro Lett. 2018, 7, 1413–1419.

    Article  CAS  Google Scholar 

  9. Zhang, X. Y.; Jones, G. O.; Hedrick, J. L.; Waymouth, R. M. Fast and selective ring-opening polymerizations by alkoxides and thioureas. Wat. Chem. 2016, 8, 1047–1053.

    CAS  Google Scholar 

  10. Ottou, W. N.; Sardon, H.; Mecerreyes, D.; Vignolle, J.; Taton, D. Update and challenges in organo-mediated polymerization reactions. Prog. Polym. Sci. 2016, 56, 64–115.

    Article  CAS  Google Scholar 

  11. Spassky, N.; Wisniewski, M.; Pluta, C.; LeBorgne, A. Highly stereoelective polymerization of rac-(D,L)-lactide with a chiral Schiff’s base/aluminium alkoxide initiator. Macromol. Chem. Phys. 1996, 197, 2627–2637.

    Article  CAS  Google Scholar 

  12. Zhong, Z. Y.; Dijkstra, P. J.; Feijen, J. [(Salen)Al]-mediated, controlled and stereoselective ring-opening polymerization of lactide in solution and without solvent: synthesis of highly isotactic polylactide stereocopolymers from racemic D,L-lactide. Angew. Chem. Int. Ed. 2002, 41, 4510–4513.

    Article  CAS  Google Scholar 

  13. Nomura, N.; Ishii, R.; Yamamoto, Y.; Kondo, T. Stereoselective ring-opening polymerization of a racemic lactide by using achiral salen- and homosalen-aluminum complexes. Chem. Eur. J. 2007, 13, 4433–4451.

    Article  PubMed  CAS  Google Scholar 

  14. Maudoux, N.; Roisnel, T.; Dorcet, V.; Carpentier, J. F.; Sarazin, Y. Chiral (1,2)-diphenylethylene-salen complexes of triel metals: coordination patterns and mechanistic considerations in the isoselective ROP of lactide. Chem. Eur. J. 2014, 20, 6131–6147.

    Article  PubMed  CAS  Google Scholar 

  15. Abbina, S.; Du, G. D. Zinc-catalyzed highly isoselective ring opening polymerization of rac-lactide. ACS Macro Lett. 2014, 3, 689–692.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Kan, C.; Hu, J. W.; Huang, Y.; Wang, H. B.; Ma, H. Y. Highly isoselective and active zinc catalysts for rac-lactide polymerization: effect of pendant groups of aminophenolate ligands. Macromolecules 2017, 50, 7911–7919.

    Article  CAS  Google Scholar 

  17. Marin, P.; Tschan, M. J. L.; Isnard, F.; Robert, C.; Haquette, P.; Trivelli, X.; Chamoreau, L. M.; Guerineau, V.; del Rosal, I.; Maron, L.; Venditto, V.; Thomas, C. M. Polymerization of rac-lactide using achiral iron complexes: access to thermally stable stereocomplexes. Angew. Chem. Int. Ed. 2019, 58, 12585–12589.

    Article  CAS  Google Scholar 

  18. Zhang, J. J.; Xiong, J.; Sun, Y. Y.; Tang, N.; Wu, J. C. Highly iso-selective and active catalysts of sodium and potassium monophenoxides capped by a crown ether for the ring-opening polymerization of rac-lactide. Macromolecules 2014, 47, 7789–7796.

    Article  CAS  Google Scholar 

  19. Chen, C. J.; Jiang, J. X.; Mao, X. Y.; Cong, Y.; Cui, Y. Q.; Pan, X. B.; Wu, J. C. Isoselective polymerization of rac-lactide catalyzed by ion-paired potassium amidinate complexes. Incrg. Chem. 2018, 57, 3158–3168.

    Article  CAS  Google Scholar 

  20. Kan, Z.; Luo, W. L.; Shi, T.; Wei, C. Z.; Han, B. H.; Zheng, D. J.; Liu, S. F. Facile preparation of stereoblock PLA from ring-opening polymerization of rac-lactide by a synergetic binary catalytic system containing ureas and alkoxides. Front. Chem. 2018, 6, 547.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Arnold, P. L.; Buffet, J. C.; Blaudeck, R. P.; Sujecki, S.; Blake, A. J.; Wilson, C. C3-symmetric lanthanide tris(alkoxide) complexes formed by preferential complexation and their stereoselective polymerization of rac-lactide. Angew. Chem. Int. Ed. 2008, 47, 6033–6036.

    Article  CAS  Google Scholar 

  22. Myers, D.; White, A. J. P.; Forsyth, C. M.; Bown, M.; Williams, C. K. Phosphasalen indium complexes showing high rates and isoselectivities in rac-lactide polymerizations. Angow. Chem. Int. Ed. 2017, 56, 5277–5282.

    Article  CAS  Google Scholar 

  23. Xu, T. Q.; Yang, G. W.; Liu, C.; Lu, X. B. Highly robust yttrium bis(phenolate) ether catalysts for excellent isoselective ring-opening polymerization of racemic lactide. Macromolecules 2017, 50, 515–522.

    Article  CAS  Google Scholar 

  24. Jones, M. D.; Hancock, S. L.; McKeown, P.; Schafer, P. M.; Buchard, A.; Thomas, L. H.; Mahon, M. F.; Lowe, J. P. Zirconium complexes of bipyrrolidine derived salan ligands for the isoselective polymerisation of rac-lactide. Chem. Commun. 0014, 50, 15967–15970.

    Article  Google Scholar 

  25. Rosen, T.; Rajpurohit, J.; Lipstman, S.; Venditto, V.; Kol, M. Isoselective polymerization of rac-lactide by highly active sequential {ONNN} magnesium complexes. Chem. Eur. J. 2020, DOI: https://doi.org/10.1002/chem.202003616.

  26. Dove, A. P.; Li, H. B.; Pratt, R. C.; Lohmeijer, B. G. G.; Culkin, D. A.; Waymouth, R. M.; Hedrick, J. L. Stereoselective polymerization of rac- and meso-lactide catalyzed by sterically encumbered N-heterocyclic carbenes. Chem. Commun. 2006, 27, 2881–2883.

    Article  Google Scholar 

  27. Zhang, L.; Nederberg, F.; Messman, J. M.; Pratt, R. C.; Hedrick, J. L.; Wade, C. G. Organocatalytic stereoselective ring-opening polymerization of lactide with dimeric phosphazene bases. J. Am. Chem. Soc. 2007, 129, 12610–12611.

    Article  PubMed  CAS  Google Scholar 

  28. Liu, S. F.; Li, H. K.; Zhao, N.; Li, Z. B. Stereoselective ring-opening polymerization of rac-lactide using organocatalytic cyclic trimeric phosphazene base. ACS Macro Lett. 2018, 7, 624–628.

    Article  CAS  Google Scholar 

  29. Sanchez-Sanchez, A.; Rivilla, I.; Agirre, M.; Basterretxea, A.; Etxeberria, A.; Veloso, A.; Sardon, H.; Mecerreyes, D.; Cossío, F. P. Enantioselective ring-opening polymerization of rac-lactide dictated by densely substituted amino acids. J. Am. Chem. Soc. 2017, 139, 4805–4814.

    Article  PubMed  CAS  Google Scholar 

  30. Zhou, L.; Xu, G. Q.; Mahmood, Q.; Lv, C. D.; Wang, X. W.; Sun, X. T.; Guo, K.; Wang, Q. G. N-Heterocyclic olefins and thioureas as an efficient cooperative catalyst system for ring-opening polymerization of δ-valerolactone. Polym. Chem. 2019, 10, 1832–1838.

    Article  CAS  Google Scholar 

  31. Zhou, L.; Wang, Z. Y.; Xu, G. Q.; Yang, R. L.; Yan, H. T.; Hao, X. Q.; Wang, Q. G. N-Heterocyclic olefins catalyzed ring-opening polymerization of W-tosyl aziridines. Eur. Polym. J. 2020, 140, 110046.

    Article  CAS  Google Scholar 

  32. Kronig, S.; Jones, P. G.; Tamm, M. Preparation of 2-alkylidene-substituted 1,3,4,5-tetramethylimidazolines and their reactivity towards Rh1 complexes and B(C6F5)3. Eur. J. Incrg. Chem. 2013, 13, 2301–2314.

    Article  Google Scholar 

  33. Naumann, S.; Thomas, A. W.; Dove, A. P. N-heterocyclic olefins as organocatalysts for polymerization: preparation of well-defined poly(propylene oxide). Angew. Chem. Int. Ed. 2015, 54, 9550–9554.

    Article  CAS  Google Scholar 

  34. Strukil, V.; Igrc, M. D.; Eckert-Maksic, M.; Friscic, T. Click mechanochemistry: quantitative synthesis of “ready to use” chiral organocatalysts by efficient two-fold thiourea coupling to vicinal diamines. Chem. Eur. J. 2012, 18, 8464–8473.

    Article  PubMed  CAS  Google Scholar 

  35. Lv, C. D.; Zhou, L.; Yuan, R. T.; Mahmood, Q.; Xu, G. Q.; Wang, Q. G. Isoselective ring-opening polymerization and asymmetric kinetic resolution polymerization of rac-lactide catalyzed by bifunctional iminophosphorane-thiourea/urea catalysts. New J. Chem. 2020, 44, 1648–1655.

    Article  CAS  Google Scholar 

  36. Yuan, R. T.; Xu, G. Q.; Lv, C. D.; Zhou, L.; Yang, R. L.; Wang, Q. G. Bifunctional phosphazene-thiourea/urea catalyzed ring-opening polymerization of cyclic esters. Mater. Today Commun. 2020, 22, 100747.

    Article  CAS  Google Scholar 

  37. Lin, B. H.; Waymouth, R. M. Organic ring-opening polymerization catalysts: reactivity control by balancing acidity. Macromolecules 2018, 51, 2932–2938.

    Article  CAS  Google Scholar 

  38. Zhang, X. Y.; Jones, G. O.; Hedrick, J. L.; Waymouth, R. M. Fast and selective ring-opening polymerizations by alkoxides and thioureas. Nat. Chem. 2016, 8, 1047–1053.

    Article  PubMed  CAS  Google Scholar 

  39. Lin, B. H.; Waymouth, R. M. Urea anions: simple, fast, and selective catalysts for ring-opening polymerizations. J. Am. Chem. Soc. 2017, 139, 1645–1652.

    Article  PubMed  CAS  Google Scholar 

  40. Fastnacht, K. V.; Spink, S. S.; Dharmaratne, N. U.; Pothupitiya, J. U.; Datta, P. P.; Kiesewetter, E. T.; Kiesewetter, M. K. Bis- and tris-urea H-bond donors for ring-opening polymerization: unprecedented activity and control from an organocatalyst. ACS Macro Lett. 2016, 5, 982–986.

    Article  CAS  Google Scholar 

  41. Hewawasam, R. S.; Kalana, U. L. D. I.; Dharmaratne, N. U.; Wright, T. J.; Bannin, T. J.; Kiesewetter, E. T.; Kiesewetter, M. K. Bisurea and bisthiourea H-bonding organocatalysts for ring-opening polymerization: cues for the catalyst design. Macromolecules 2019, 52, 9232–9237.

    Article  CAS  Google Scholar 

  42. Shen, Y.; Xiong, W.; Li, Y. Z.; Zhao, Z. C.; Lu, H.; Li, Z. B. Chemoselective polymerization of fully biorenewable a-methylene-γ-butyrolactone using organophosphazene/urea binary catalysts toward sustainable polyesters. CCS Chem. 2020, 2, 620–630.

    Google Scholar 

  43. Moins, S.; Hoyas, S.; Lemaur, V.; Orhan, B.; Delle Chiaie, K.; Lazzaroni, R.; Taton, D.; Dove, A. P.; Coulembier, O. Stereoselective ROP of rae- and meso-lactides using achiral TBD as catalyst. Catalysts 2020, 10, 620.

    Article  CAS  Google Scholar 

  44. Lv, C. D.; Xu, G. Q.; Yang, R. L.; Zhou, L.; Wang, Q. G. Chiral phosphoric acid catalyzed asymmetric kinetic resolution polymerization of 6-aryl-ε-caprolactones. Polym. Chem. 2020, 11, 4203–4207.

    Article  CAS  Google Scholar 

  45. Li, H.; Ai, B. R.; Hong, M. Stereoselective ring-opening polymerization of rac-lactide by bulky chiral and achiral N-heterocyclic carbenes. Chinese J. Polym. Sci. 2018, 36, 231–236.

    Article  CAS  Google Scholar 

  46. Mahmood, Q.; Xu, G. Q.; Zhou, L.; Guo, X. H.; Wang, Q. G. Chiral 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD)-catalyzed stereoselective ring-opening polymerization of rac-lactide: high reactivity for isotactic enriched polylactides (PLAs). Polymurs 2020, 12, 2365.

    Article  CAS  Google Scholar 

  47. Pratt, R. C.; Lohmeijer, B. G. G.; Long, D. A.; Waymouth, R. M.; Hedrick, J. L. Triazabicyclodecene: a simple bifunctional organocatalyst for acyl transfer and ring-opening polymerization of cyclic esters. J. Am. Chem. Soc. 2006, 128, 4556–4557.

    Article  PubMed  CAS  Google Scholar 

  48. Orhan, B.; Tschan, M. J. L.; Wirotius, A. L.; Dove, A. P.; Coulembier, O.; Taton, D. Isoselective ring-opening polymerization of rac-lactide from chiral Takemoto’s organocatalysts: elucidation of stereocontrol. ACS Maero Lett. 2018, 7, 1413–1419.

    Article  CAS  Google Scholar 

  49. Kou, X. H; Shen, Y.; Li, Z. B. Stereoselective ring-opening polymerization of rac-lactide using chiral urea/strong organobase binary catalyst system. Aeta Polymuriea Siniea (in Chinese) 2020, 51, 1121–1129.

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Key R&D Plan (No. 2017YFC1104800), the National Natural Science Foundation of China (Nos. 21901249 and 21950410529), Taishan Scholars Program of Shandong Province (No. tsqn201812112), and “135” Projects Fund of CAS-QIBEBT Director Innovation Foundation and DICP & QIBEBT United Foundation (No. UN201701).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guang-Qiang Xu, Li Zhou or Qing-Gang Wang.

Electronic Supplementary Information

10118_2021_2535_MOESM1_ESM.pdf

Isoselective Ring-opening Polymerization of Racemic Lactide Catalyzed by N-heterocyclic Olefin/(Thio)urea Organocatalysts

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, ZY., Xu, GQ., Zhou, L. et al. Isoselective Ring-opening Polymerization of Racemic Lactide Catalyzed by N-heterocyclic Olefin/(Thio)urea Organocatalysts. Chin J Polym Sci 39, 709–715 (2021). https://doi.org/10.1007/s10118-021-2535-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-021-2535-x

Keywords

Navigation