Skip to main content
Log in

Synthesis of Well-defined Poly(tetrahydrofuran)-b-Poly(a-amino acid)s via Cationic Ring-opening Polymerization (ROP) of Tetrahydrofuran and Nucleophilic ROP of N-thiocarboxyanhydrides

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

The synthesis of block copolymers of poly(tetrahydrofuran)-b-poly(α-amino acid) (PTHF-b-PAA) is challenging since it is difficult to combine the two blocks produced via different/conflicting ring-opening polymerization (ROP) mechanisms. In this contribution, the cationic ROP of THF is catalyzed by rare-earth triflate [RE(OTf)3] and terminated by 2-(t-butyloxycarbonyl-amino) ethanol (BAE). After the deprotection of t-butyloxycarbonyl (Boc) group, the chain end of PTHF is quantitatively changed to amino group which thereafter initiates the nucleophilic ROP of α-amino acid N-thiocarboxyanhydrides (NTAs). Both polymerizations are well controlled, generating PTHF and PAA segments with designable molecular weights (MWs). PTHF-b-polylysine (PTHF-b-PLys) and PTHF-b-polysarcosine (PTHF-b-PSar) are obtained with MWs between 8.6 and 28.7 kg/mol. The above amphiphilic diblock copolymers form micelles in water. PTHF40-b-PSar32 acts as a surfactant to stabilize oil-in-water emulsions. Both segments of PTHF-b-PAA are biocompatible and promising in the biomedical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Basko, M.; Bednarek, M.; Billiet, L.; Kubisa, P.; Goethals, E.; Prez, F. D. Combining cationic ring-opening polymerization and click chemistry for the design of functionalized polyurethanes. J. Polym. Sci., Part A: Polym. Chem. 2011, 49, 1597–1604.

    Article  CAS  Google Scholar 

  2. Jayakannan, M.; Ramakrishnan, S. Recent developments in polyether synthesis. Macromol. Rapid Commun. 2011, 22, 1463–1473.

    Article  Google Scholar 

  3. Guo, A. R.; Yang, W. X.; Yang, F.; Yu, R.; Wu, Y. X. Well-defined poly(γ-benzyl-L-glutamate)-g-polytetrahydrofuran: synthesis, characterization, and properties. Macromolecules 2014, 47, 5450–5461.

    Article  CAS  Google Scholar 

  4. Cheradame, H.; Sassatelli, M.; Pomel, C.; Sanh, A.; Gau-Racine, J.; Bacri, L.; Attvray, L.; Guégan, P. Tuning macromolecular structures of synthetic vectors for gene therapy. Macromol. Symp. 2008, 261, 167–181.

    Article  CAS  Google Scholar 

  5. Mu, C. G.; Fan, X. D.; Tian, W.; Bai, Y.; Yang, Z.; Fan, W. W.; Chen, H. Synthesis and stimulus-responsive micellization of a well-defined H-shaped terpolymer. Polym. Chem. 2012, 3, 3330–3339.

    Article  CAS  Google Scholar 

  6. Cao, J. B.; Siefker, D.; Chan, B. A.; Yu, T. Y.; Lu, L.; Saputra, M. A.; Fronczek, F. R.; Xie, W. W.; Zhang, D. H. Interfacial ring-opening polymerization of amino-acid-derived N-thiocarboxyanhydrides toward well-defined polypeptides. ACS Macro Lett. 2017, 6, 836–840.

    Article  CAS  Google Scholar 

  7. Song, Z. Y.; Han, Z. Y.; Lv, S. X.; Chen, C. Y.; Chen, L.; Yin, L. C.; Cheng, J. J. Synthetic polypeptides: from polymer design to supramolecular assembly and biomedical application. Chem. Soc. Rev. 2017, 46, 6570–6599.

    Article  CAS  Google Scholar 

  8. Deming, T. J. Synthesis of side-chain modified polypeptides. Chem. Rev. 2016, 116, 786–808.

    Article  CAS  Google Scholar 

  9. Deng, C.; Wu, J. T.; Cheng, R.; Meng, F. H.; Klok, H. A.; Zhong, Z. Y. Functional polypeptide and hybrid materials: precision synthesis via a-amino acid N-carboxyanhydride polymerization and emerging biomedical applications. Prog. Polym. Sci. 2014, 39, 330–364.

    Article  CAS  Google Scholar 

  10. Shen, Y.; Fu, X. H.; Fu, W. X.; Li, Z. B. Biodegradable stimuliresponsive polypeptide materials prepared by ring opening polymerization. Chem. Soc. Rev. 2015, 44, 612–622.

    Article  CAS  Google Scholar 

  11. Gu, L.; Jiang, Y. Z.; Hu, J. L. Scalable spider-silk-like supertough fibers using a pseudoprotein polymer. Adv. Mater. 2019, 31, e1904311.

    Article  CAS  Google Scholar 

  12. Ebrahimi, D.; Tokareva, O.; Rim, N. G.; Wong, J. Y.; Kaplan, D. L.; Buehler, M. J. Silk-its mysteries, how it is made, and how it is used. ACS Biomater. Sci. Eng. 2015, 1, 864–876.

    Article  CAS  Google Scholar 

  13. Yarger, J. L.; Cherry, B. R.; van der Vaart, A. Uncovering the structure-function relationship in spider silk. Nat. Rev. Mater. 2018, 3, 18008.

    Article  CAS  Google Scholar 

  14. Eisoldt, L.; Smith, A.; Scheibel, T. Decoding the secrets of spider silk. Mater. Today 2011, 14, 80–86.

    Article  CAS  Google Scholar 

  15. Tian, Z.; Wang, M.; Zhang, A. Y.; Feng, Z. G. Preparation and evaluation of novel amphiphilic glycopeptide block copolymers as carriers for controlled drug release. Polymer 2008, 49, 446–454.

    Article  CAS  Google Scholar 

  16. Tian, Z.; Zhang, A. Y.; Ye, L.; Wang, M.; Feng, Z. G. Preparation and evaluation of a linoleic-acid-modified amphiphilic polypeptide copolymer as a carrier for controlled drug release. Biomed. Mater. 2008, 3, 044116.

    Article  CAS  Google Scholar 

  17. Wessely, F.; Riedl, K.; Tuppy, H. Untersuchungen uber a-amino-N-carbonsaureanhydride. 6. Monatsh. Chem. 1950, 81, 861–872.

    Article  CAS  Google Scholar 

  18. Tao, X. F.; Deng, C.; Ling, J. PEG-amine-initiated polymerization of sarcosine N-thiocarboxyanhydrides toward novel double-hydrophilic PEG-b-polysarcosine diblock copolymers. Macromol. Rapid. Commun. 2014, 35, 875–81.

    Article  CAS  Google Scholar 

  19. Tao, X. F.; Zheng, B. T.; Kricheldorf, H. R.; Ling, J. Are N-substituted glycine N-thiocarboxyanhydride monomers really hard to polymerize? J. Polym. Sci., Part A: Polym. Chem. 2017, 55, 404–410.

    Article  CAS  Google Scholar 

  20. Tao, X. F.; Zheng, B. T.; Bai, T. W.; Li, M. H.; Ling, J. Polymerization of N-substituted glycine N-thiocarboxyanhydride through regioselective initiation of cysteamine: a direct way toward thiol-capped polypeptoids. Macromolecules 2018, 51, 4494–4501.

    Article  CAS  Google Scholar 

  21. Tao, X. F.; Deng, Y. W.; Shen, Z. Q.; Ling, J. Controlled polymerization of N-substituted glycine N-thiocarboxyanhydrides initiated by rare earth borohydrides toward hydrophilic and hydrophobic polypeptoids. Macromolecules 2014, 44, 6173–6180.

    Article  CAS  Google Scholar 

  22. Zheng, B. T.; Bai, T. W.; Tao, X. F.; Schlaad, H.; Ling, J. Identifying the hydrolysis of carbonyl sulfide as a side reaction impeding the polymerization of N-substituted glycine N-thiocarboxyanhydride. Biomacromolecules 2018, 19, 4263–4269.

    Article  CAS  Google Scholar 

  23. Tao, X. F; Zheng, B. T.; Bai, T. W.; Zhu, B. K.; Ling, J. Hydroxyl group tolerated polymerization of N-substituted glycine N-thiocarboxyanhydride mediated by aminoalcohols: a simple way to a-hydroxyl-ω-aminotelechelic polypeptoids. Macromolecules 2017, 50, 3066–3077.

    Article  CAS  Google Scholar 

  24. Tao, X. F.; Li, M. H.; Ling, J. a-Amino acid N-thiocarboxyanhydrides: a novel synthetic approach toward poly(a-amino acid)s. Eur. Polym. J. 2018, 109, 26–42.

    Article  CAS  Google Scholar 

  25. Miao, Y. D.; Xie, F. N.; Cen, J. Y.; Zhou, F.; Tao, X. F.; Luo, J. F.; Han, G. C.; Kong, X. L.; Yang, X. M.; Sun, J. H.; Ling, J. Fe3+@polyDOPA-b-polysarcosine, a T1-weighted MRI contrast agent via controlled NTA polymerization. ACS Macro Lett. 2018, 4, 693–698.

    Article  CAS  Google Scholar 

  26. Cen, J. Y.; Zheng, B. T.; Yang, Y.; Wu, J. D.; Mao, Z. W.; Ling, J.; Han, G. C. Ag@polyDOPA-b-polysarcosine hybrid nanoparticles with antimicrobial properties from in situ reduction and NTA polymerization. Eur. Polym. J. 2019, 121, 109269.

    Article  CAS  Google Scholar 

  27. Birke, A.; Ling, J.; Barz, M. Polysarcosine-containing copolymers: synthesis, characterization, self-assembly, and applications. Prog. Polym. Sci. 2018, 81, 163–208.

    Article  CAS  Google Scholar 

  28. Bai, T. W.; Shen, B.; Cai, D.; Luo, Y. F.; Zhou, P.; Xia, J. Y.; Zheng, B. T.; Zhang, K.; Xie, R. Z.; Ni, X. F.; Xu, M. S.; Ling, J.; Song, J. H. Understanding ring-closing and racemization to prepare a-amino acid NCA and NTA monomers: a DFT study. Phys. Chem. Chem. Phys. 2020, 22, 14868–14874.

    Article  CAS  Google Scholar 

  29. You, L.; Hogen-Esch, T. E.; Zhu, Y. H.; Ling, J.; Shen, Z. Q. Brønsted acid-free controlled polymerization of tetrahydrofuran catalyzed by recyclable rare earth triflates in the presence of epoxides. Polymer 2012, 53, 4112–4118.

    Article  CAS  Google Scholar 

  30. Bernaerts, K. V.; Schacht, E. H.; Goethals, E. J.; Prez, F. E. D. Synthesis of poly(tetrahydrofuran)-b-polystyrene block copolymers from dual initiators for cationic ring-opening polymerization and atom transfer radical polymerization. J. Polym. Sci., Part A: Polym. Chem. 2003, 41, 3206–3217.

    Article  CAS  Google Scholar 

  31. Siefker, D.; Williams, A. Z.; Stanley, G. G.; Zhang, D. H. Organic acid promoted controlled ring-opening polymerization of α-amino acid-derived N-thiocarboxyanhydrides (NTAs) toward well-defined polypeptides. ACS Macro Lett. 2018, 4, 1272–1277.

    Article  CAS  Google Scholar 

  32. Mäemets, V.; Koppel, I. 17O and 1H NMR chemical shifts of hydroxide and hydronium ion in aqueous solutions of strong electrolytes. J. Chem. Soc., Faraday Trans. 1997, 93, 1539–1542.

    Article  Google Scholar 

  33. Fetsch, C.; Grossmann, A.; Holz, L.; Nawroth, J. F.; Luxenhofer, R. Polypeptoids from N-substituted glycine N-carboxyanhydrides: hydrophilic, hydrophobic, and amphiphilic polymers with poisson distribution. Macromolecules 2011, 44, 6746–6758.

    Article  CAS  Google Scholar 

  34. Mats, L.; Adrian, H.; John, D. Suspension stability: why particle size, zeta potential and rheology are important. Ann. Trans. Nordic Rheol. Soc. 2012, 20, 209–214.

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by Joint Foundation of Shaanxi Province Natural Science Basic Research Program and Shaanxi Coal Chemical Group Co., Ltd. (No. 2019JLM-46) and the National Natural Science Foundation of China (No. 21674091).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jie Kong or Jun Ling.

Electronic Supplementary Information

10118_2021_2539_MOESM1_ESM.pdf

Synthesis of Well-defined Poly(tetrahydrofuran)-b-Poly(a-amino acid)s via Cationic Ring-opening Polymerization (ROP) of Tetrahydrofuran and Nucleophilic ROP of N-thiocarboxyanhydrides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, P., Dai, XG., Kong, J. et al. Synthesis of Well-defined Poly(tetrahydrofuran)-b-Poly(a-amino acid)s via Cationic Ring-opening Polymerization (ROP) of Tetrahydrofuran and Nucleophilic ROP of N-thiocarboxyanhydrides. Chin J Polym Sci 39, 702–708 (2021). https://doi.org/10.1007/s10118-021-2539-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-021-2539-6

Keywords

Navigation