Skip to main content

Advertisement

Log in

Bimetallic AuPd@CeO2 Nanoparticles Supported on Potassium Titanate Nanobelts: A Highly Efficient Catalyst for the Reduction of NO with CO

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A nanocomposite consisting of bimetallic AuPd nanoparticles, which were modified with CeO2 (AuPd@CeO2), and deposited on potassium titanate nanobelts (KTN) as support, is shown to exhibit outstanding catalytic performance in the selective catalytic reduction of NO with CO. Transmission electron microscopy and energy dispersive X-Ray elemental mapping indicated that the AuPd nanoparticles surrounded by CeO2 were well-mixed forming an alloy. The potassium titanate support consisted of 1–3 µm long and 8–14 nm wide nanobelts. The AuPd@CeO2/KTN catalyst showed full NO conversion at 100 % selectivity to N2 at a gas-hourly space velocity (GHSV) of 15,000 h−1 and 200 °C. The outstanding performance of the AuPd@CeO2/KNT catalyst is attributed to favorable synergies between its components. Corresponding monometallic Au catalysts supported on KTN (Au@CeO2/KNT), as well as bimetallic AuPd supported on TiO2 (AuPd@CeO2/TiO2), showed inferior catalytic performance, indicating the absence of a beneficial synergy between the different components. In situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) combined with modulation excitation spectroscopy (MES) proved that alloying of Au with Pd enhances the ability to adsorb CO and NO on the surface in an on-top configuration and that the deposition of the bimetallic AuPd nanoparticles on KTN facilitates the crucial formation of isocyanate (-NCO) species, resulting in high conversion and selectivity.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Punov P, Evtimov T, Chiriac R, Clenci A, Danel Q, Descombes G (2017) Int J Energy Res 41:1229–1241

    Article  CAS  Google Scholar 

  2. Jin YY, Li YY, Liu FQ (2016) Front Env Sci Eng 10:201–210

    Article  CAS  Google Scholar 

  3. Wang YF, Niu YQ, Sun P, Hui SE, Liu RW, Wang ZZ, Zhang XL (2016) Asia-Pac J Chem Eng 11:492–499

    Article  CAS  Google Scholar 

  4. Kim KH, Jahan SA, Kabir E (2012) Trac-Trend Anal Chem 33:1–8

    Article  CAS  Google Scholar 

  5. Xu ZC, Li YR, Lin YT, Zhu TY (2020) Environ Sci Pollut Res 27:6723–6748

    Article  CAS  Google Scholar 

  6. Viswanathan B (1992) Catal Rev Sci Eng 34:337–354

    Article  CAS  Google Scholar 

  7. Ding WC, Gu XK, Su HY, Li WX (2014) J Phys Chem C 118:12216–12223

    Article  CAS  Google Scholar 

  8. Higo T, Omori Y, Shigemoto A, Ueno K, Ogo S, Sekine Y (2020) Catal Today 352:192–197

    Article  CAS  Google Scholar 

  9. Stoyanova D, Georgieva P, Kasabova N (2013) React Kinet Mech Catal 108:391–402

    Article  CAS  Google Scholar 

  10. Fernandez E, Liu LC, Boronat M, Arenal R, Concepcion P, Corma A (2019) ACS Catal 9:11530–11541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. van Spronsen MA, van Baarle GJC, Herbschleb CT, Frenken JWM, Groot IMN (2015) Catal Today 256:384–384

    Article  CAS  Google Scholar 

  12. Xiao P, Davis RC, Ouyang XY, Li JL, Thomas A, Scott SL, Zhu JJ (2014) Catal Commun 50:69–72

    Article  CAS  Google Scholar 

  13. Ueda K, Tsuji M, Ohyama J, Satsuma A (2019) ACS Catal 9:2866–2869

    Article  CAS  Google Scholar 

  14. Wang CX, Xia WZ, Zhao YK (2017) Chinese J Catal 38:1399–1405

    Article  CAS  Google Scholar 

  15. Srinivasan A, Depcik C (2010) Catal Rev Sci Eng 52:462–493

    Article  CAS  Google Scholar 

  16. Kondarides DI, Chafik T, Verykios XE (2000) J Catal 193:303–307

    Article  CAS  Google Scholar 

  17. Kantcheva M, Samarskaya O, Ilieva L, Pantaleo G, Venezia AM, Andreeva D (2009) Appl Catal B-Environ 88:113–126

    Article  CAS  Google Scholar 

  18. Wang XW, Maeda N, Baiker A (2016) ACS Catal 6:7898–7906

    Article  CAS  Google Scholar 

  19. Wang XW, Wang HJ, Maeda N, Baiker A (2019) Catalysts 9

  20. Gao F, Wang YL, Goodman DW (2009) J Catal 268:115–121

    Article  CAS  Google Scholar 

  21. Shin HU, Lolla D, Nikolov Z, Chase GG (2016) J Ind Eng Chem 33:91–98

    Article  CAS  Google Scholar 

  22. Cheng XX, Zhang XY, Su DX, Wang ZQ, Chang JC, Ma CY (2018) Appl Catal B-Environ 239:485–501

    Article  CAS  Google Scholar 

  23. Deng CS, Li B, Dong LH, Zhang FY, Fan MG, Jin GZ, Gao JB, Gao LW, Zhang F, Zhou XP (2015) Phys Chem Chem Phys 17:16092–16109

    Article  CAS  PubMed  Google Scholar 

  24. Savereide L, Gosavi A, Hicks KE, Notestein JM (2020) J Catal 381:355–362

    Article  CAS  Google Scholar 

  25. Zhang SH, Lee J, Kim DH, Kim T (2020) Catal Sci Tech 10:2359–2368

    Article  CAS  Google Scholar 

  26. Shen WH, Nitta A, Chen Z, Eda T, Yoshida A, Naito S (2011) J Catal 280:161–167

    Article  CAS  Google Scholar 

  27. Yoshida A, Shen WH, Eda T, Watanabe R, Ito T, Naito S (2012) Catal Today 184:78–82

    Article  CAS  Google Scholar 

  28. Kayama T, Yamazaki K, Shinjoh H (2010) J Am Chem Soc 132:13154–13155

    Article  CAS  PubMed  Google Scholar 

  29. Shen W, Nitta A, Chen Z, Eda T, Yoshida A, Naito S (2011) J Catal 280:161–167

    Article  CAS  Google Scholar 

  30. Urayama T, Mitsudome T, Maeno Z, Mizugaki T, Jitsukawa K, Kaneda K (2016) Chem A Eur J 22:17962–17966

    Article  CAS  Google Scholar 

  31. Baurecht D, Fringeli UP (2001) Rev Sci Instrum 72:3782–3792

    Article  CAS  Google Scholar 

  32. Muller P, Hermans L (2017) Ind Eng Chem 56:1123–1136

    Article  CAS  Google Scholar 

  33. Urakawa A, Burgi T, Baiker A (2008) Chem Eng Sci 63:4902–4909

    Article  CAS  Google Scholar 

  34. Hernandez AR, Estrada EMA, Ezeta A, Manriquez ME (2019) Electrochim Acta 327.

  35. Beche E, Charvin P, Perarnau D, Abanades S, Flamant G (2008) Surf Interface Anal 40:264–267

    Article  CAS  Google Scholar 

  36. Li GS, Zhang DQ, Yu JC (2009) Phys Chem Chem Phys 11:3775–3782

    Article  CAS  PubMed  Google Scholar 

  37. Reddy BM, Khan A, Yamada Y, Kobayashi T, Loridant S, Volta JC (2003) J Phys Chem B 107:5162–5167

    Article  CAS  Google Scholar 

  38. Zhu W, Xiao SN, Zhang DQ, Liu PJ, Zhou HJ, Dai WR, Liu FF, Li HX (2015) Langmuir 31:10822–10830

    Article  CAS  PubMed  Google Scholar 

  39. Radutoiu N, Teodorescu CM (2013) Dig J Nanomater Biostruct 8:1535–1549

    Google Scholar 

  40. Bera P, Patil KC, Jayaram V, Subbanna GN, Hegde MS (2000) J Catal 196:293–301

    Article  CAS  Google Scholar 

  41. Brackmann R, Alves OC, Woyames CB, Toniolo FS, Schmal M (2020) Appl Catal A-Gen 600:117601

    Article  CAS  Google Scholar 

  42. Wang XW, Maeda N, Meier DM, Baiker A (2020) ChemCatChem. https://doi.org/10.1002/cctc.202001401

    Article  PubMed  PubMed Central  Google Scholar 

  43. Wang XW, Wu XL, Maeda N, Baiker A (2017) Appl Catal B-Environ 209:62–68

    Article  CAS  Google Scholar 

  44. Venkov T, Fajerwerg K, Delannoy L, Klimev H, Hadjiivanov K, Louis C (2006) Appl Catal A-Gen 301:106–114

    Article  CAS  Google Scholar 

  45. Abbott HL, Aumer A, Lei Y, Asokan C, Meyer RJ, Sterrer M, Shaikhutdinov S, Freund HJ (2010) J Phys Chem C 114:17099–17104

    Article  CAS  Google Scholar 

  46. Debeila MA, Coville NJ, Scurrell MS, Hearne GR (2005) Appl Catal A-Gen 291:98–115

    Article  CAS  Google Scholar 

  47. Alayoglu S, Somorjai GA (2016) Top Catal 59:420–438

    Article  CAS  Google Scholar 

  48. Alayoglu S, Tao F, Altoe V, Specht C, Zhu ZW, Aksoy F, Butcher DR, Renzas RJ, Liu Z, Somorjai GA (2011) Catal Lett 141:633–640

    Article  CAS  Google Scholar 

  49. Solymosi F, Bansagi T, Zakar TS (2003) Catal Lett 87:7–10

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Dr. Yan Xie is acknowledged for TEM and XPS measurements. This work was financially supported by the Natural Science Foundation of China (NSFC) (No. 21377017), the start-up grant from Dalian University of Technology (Nos. DUT13RC(03)04 and DUT13RC(3)26), the National Thousand Talents Program of China and the Fundamental Research Funds for the Central Universities of China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nobutaka Maeda or Alfons Baiker.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

(png 617 kb)

(png 20 kb)

(png 28 kb)

(png 17 kb)

(png 59 kb)

(png 1173 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Maeda, N., Meier, D.M. et al. Bimetallic AuPd@CeO2 Nanoparticles Supported on Potassium Titanate Nanobelts: A Highly Efficient Catalyst for the Reduction of NO with CO. Catal Lett 151, 2483–2491 (2021). https://doi.org/10.1007/s10562-020-03502-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03502-7

Keywords

Navigation