Skip to main content
Log in

Novel CuO@TiO2 Core–Shell Nanostructure Catalyst for Selective Catalytic Reduction of NOx with NH3

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

CuO@TiO2 core–shell nanostructure catalyst with CuO core and TiO2 shell was prepared by a two-step method and then used in NH3-SCR reaction. FE-SEM, TEM and element mapping were used to investigate the morphologies of the sample. Their results indicated CuO nanorods were coated with TiO2 and thus forming a core–shell nanostructure. According to the results of N2 adsorption–desorption, XRD, Raman, XPS, NH3-TPD, H2-TPR and in situ DRIFTS, the core–shell nanostructure would benefit the formation of better redox ability, more oxygen vacancies, more acid sites and abundant adsorbed NOx species on the catalyst. Thus, the core–shell nanostructure catalyst presented significantly higher activity than pure CuO and TiO2. NH3-SCR reaction on CuO@TiO2 core–shell catalyst should follow both Eley–Rideal (E-R) mechanism and Langmuir-Hinshewood (L–H) mechanism. These findings may promote the development of the new effective non-vanadium-based SCR catalysts.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Yu J, Si Z, Li X, Chen L, Wu X, Weng D (2016) Effect of lean-oxygen treatment on the adsorption and activity of zirconium phosphate@Ce0.75Z0.25O2 for NH3-SCR deNOx. Catal Today 127:255–264

    Google Scholar 

  2. Beretta A, Lanza A, Lietti L, Clave S, Collier J, Nash M (2019) An investigation on the redox kinetics of NH3-SCR over a V/Mo/Ti catalyst: Evidence of a direct role of NO in the re-oxidation step. Chem Eng J 359:88–98

    Article  CAS  Google Scholar 

  3. Yang Y, Wang M, Tao Z, Liu Q, Fei Z, Chen X, Zhang Z, Tang J, Cui M, Qiao X (2018) Mesoporous Mn-Ti amorphous oxides: a robust low-temperature NH3-SCR catalyst. Catal Sci Technol 8:6396–6406

    Article  CAS  Google Scholar 

  4. Liu Z, Li Y, Zhu T, Su H, Zhu J (2014) Selective Catalytic Reduction of NOx by NH3 over Mn-Promoted V2O5/TiO2 Catalyst. Chem Res 53:12964–12970

    CAS  Google Scholar 

  5. Chen Z, Yang Q, Li H, Li X, Wang L, Tsang S (2010) Cr-MnOx mixed-oxide catalysts for selective catalytic reduction of NOx with NH3 at low temperature. J Catal 276:56–65

    Article  CAS  Google Scholar 

  6. Boningari T, Koirala R, Smirniotis P (2012) Low-temperature selective catalytic reduction of NO with NH3 over V/ZrO2 prepared by flame-assisted spray pyrolysis: Structural and catalytic properties. Appl Catal B Environ 127:255–264

    Article  CAS  Google Scholar 

  7. Chen L, Li J, Ge M (2010) DRIFT study on cerium-tungsten/titiania catalyst for selective catalytic reduction of NOx with NH3. Environ Sci Technol 44:9590–9596

    Article  CAS  PubMed  Google Scholar 

  8. Ramis G, Busca G, Bregani F (1993) On the effect of dopants and additives on the state of surface vanadyl centers of vanadia-titania catalysts. Catal Lett 18:299–303

    Article  CAS  Google Scholar 

  9. Fickel D, D’Addio E, Lauterbach J, Lobo R (2011) The ammonia selective catalyticreduction activity of copper-exchanged small-pore zeolites. Appl Catal B Environ 102:441–448

    Article  CAS  Google Scholar 

  10. Brandenberger S, Kroecher O, Tissler A, Althoff R (2008) The state of the art in selective catalytic reduction of NOx by ammonia using metal-exchanged zeolite catalysts. Catal Rev Sci Eng 50:492–531

    Article  CAS  Google Scholar 

  11. Xu X, Tong Y, Zhang J, Fang X, Xu J, Liu F, Liu J, Zhong W, Lebedeva O, Wang X (2020) Investigation of lattice capacity effect on Cu2+-doped SnO2 solid solution catalysts to promote reaction performance toward NOx-SCR with NH3. Chinese J Catal 5:877–888

    Article  Google Scholar 

  12. Deka U, Juhin A, Eilertsen E, Emerich H, Green M, Korhonen S, Weckhuysen B, Beale A (2012) Confirmation of isolated Cu2+ ions in SSZ-13 zeolite as active sites in NH3-selective catalytic reduction. J Phys Chem C 116:4809–4818

    Article  CAS  Google Scholar 

  13. Damma D, Boningari T, Ettireddy P, Reddy B, Smirniotis P (2018) Direct decomposition of NOx over TiO2 supported transition metal oxides at low temperatures. Ind Eng Chem Res 57:16615–16621

    Article  CAS  Google Scholar 

  14. Yu C, Huang B, Dong L, Chen F, Liu X (2017) In situ FT-IR study of highly dispersed MnOx/SAPO-34 catalyst for low-temperature selective catalytic reduction of NOx by NH3. Catal Today 281:610–620

    Article  CAS  Google Scholar 

  15. Qi G, Yang R (2003) Performance and kinetics study for low-temperature SCR of NO with NH3 over MnOx-CeO2 catalyst. J Catal 217:434–441

    Article  CAS  Google Scholar 

  16. Tan J, Wei Y, Sun Y, Liu J, Zhao Z, Song W, Li J, Zhang X (2018) Simultaneous removal of NOx and soot particulates from diesel engine exhaust by 3DOM Fe-Mn oxide catalysts. J Ind Eng Chem 63:84–94

    Article  CAS  Google Scholar 

  17. Pappas D, Boningari T, Boolchand P, Smirniotis P (2016) Novel manganese oxide confined interweaved titania nanotubes for the low-temperature Selective Catalytic Reduction (SCR) of NOx by NH3. J Catal 334:1–13

    Article  CAS  Google Scholar 

  18. Yu Y, Chen C, Ma M, Douthwaite M, He C, Miao J, Chen J, Li C (2019) SO2 promoted in situ recovery of thermally deactivated Fe2(SO4)3/TiO2 NH3-SCR catalysts: From experimental work to theoretical study. Chem Eng J 361:820–829

    Article  CAS  Google Scholar 

  19. Hou X, Chen H, Liang Y, Yang X, Wei Y (2020) Pr-doped Modified Fe-Mn/TiO2 Catalysts with a High Activity and SO2 Tolerance for NH3-SCR at Low-Temperature. Catal Lett 150:1041–1048

    Article  CAS  Google Scholar 

  20. Yao X, Kang K, Cao J, Chen L, Luo W, Zhao W, Rong J, Chen Y (2020) Enhancing the denitration performance and anti-K poisoning ability of CeO2-TiO2/P25 catalyst by H2SO4 pretreatment: structure-activity relationship and mechanism study. Appl Catal B Environ 269:118808

    Article  CAS  Google Scholar 

  21. Boningari T, Ettireddy P, Somogyvari A, Liu Y, Vorontsov A, McDonald C, Smirniotis P (2015) Influence of elevated surface texture hydrated titania on Ce-doped Mn/TiO2 catalysts for the low-temperature SCR of NOx under oxygen-rich conditions. J Catal 325:145–155

    Article  CAS  Google Scholar 

  22. Liu Y, Guo L, Zhao D, Li X, Gao Z, Ding T, Tian Y, Jiang Z (2017) Enhanced activity of CuO/K2CO3/MgAl2O4 catalyst for lean NOx storage and reduction at high temperatures. RSC Adv 7:27405–27414

    Article  CAS  Google Scholar 

  23. Deka U, Lezcano-Gonzalez I, Weckhuysen B, Beale A (2013) Local environment and nature of Cu active sites in zeolite-based catalysts for the selective catalytic reduction of NOx. ACS Catal 3:413–427

    Article  CAS  Google Scholar 

  24. Gao F, Kwak J, Szanyi J, Peden, (2013) Current understanding of Cu-exchanged chabazite molecular sieves for use as commercial diesel engine DeNOx catalysts. Top Catal 56:1441–1459

    Article  CAS  Google Scholar 

  25. Kang M, Park E, Kim J, Yie J (2006) Cu-Mn mixed oxides for low temperature NO reduction with NH3. Catal Today 111:236–241

    Article  CAS  Google Scholar 

  26. Xue J, Wang X, Qi G, Wang J, Shen M, Li W (2013) Characterization of copper species over Cu/SAPO-34 in selective catalytic reduction of NOx with ammonia: relationships between active Cu sites and de-NOx performance at low temperature. J Catal 297:56–64

    Article  CAS  Google Scholar 

  27. Paolucci C, Parekh A, Khurana I, Di Iorio J, Li H, Caballero J, Shih A, Anggara T, Delgass W, Miller J, Ribeiro F, Gounder R, Schneider W (2016) Catalysis in a cage: condition-dependent speciation and dynamics of exchanged Cu cations in SSZ-13 zeolites. J Am Chem Soc 138:6028–6048

    Article  CAS  PubMed  Google Scholar 

  28. Pan W, Zhou Y, Guo R, Zhen W, Hong J, Xu H, Jin Q, Ding C, Guo S (2014) Influence of calcination temperature on CeO2-CuO catalyst for the selective catalytic reduction of NO with NH3. Environ Prog Sustain Energy 33:385–389

    Article  CAS  Google Scholar 

  29. Liu J, Li X, Zhao Q, Ke J, Xiao H, Lv X, Liu S, Tade M, Wang S (2017) Mechanistic investigation of the enhanced NH3-SCR on cobalt-decorated Ce-Ti mixed oxide: in situ FTIR analysis for structure-activity correlation. Appl Catal B Environ 200:297–308

    Article  CAS  Google Scholar 

  30. Huang X, Dong F, Zhang G, Tang Z (2020) Modification of composite catalytic material CumVnOx@CeO2 core-shell nanorods with tungsten for NH3-SCR. Nanoscale 30:16366–16380

    Article  Google Scholar 

  31. Ma D, Liu Y, Huang B, Wang L, Wang X, Sheng Z, Dong F (2019) MnOx-CeO2@TiO2 core-shell composites for low temperature SCR of NOx. New J Chem 43:15161–15168

    Article  CAS  Google Scholar 

  32. Huang C, Guo R, Pan W, Sun X, Liu S, Liu J, Wang Z, Shi X (2018) SCR of NOx by NH3 over MnFeOx@TiO2 catalyst with a core-shell structure: The improved K resistance. J Energy Inst 92:1364–1378

    Article  CAS  Google Scholar 

  33. Li S, Huang B, Yu C (2017) A CeO2-MnOx core-shell catalyst for low-temperature NH3-SCR of NO. Catal Commun 98:47–51

    Article  CAS  Google Scholar 

  34. Yu Y, Chen C, He C, Miao J, Chen J (2019) In situ Growth Synthesis of CuO@Cu-MOFs Core-shell Materials as Novel Low-temperature NH3-SCR Catalysts. ChemCatChem 11:979–984

    CAS  Google Scholar 

  35. Sheng Z, Ma D, Yu D, Xiao X, Huang B, Yang L, Wang S (2018) Synthesis of novel MnOx@TiO2 core-shell nanorod catalyst for low-temperature NH3-selective catalytic reduction of NOx with enhanced SO2 tolerance. Chinese J Catal 39:821–830

    Article  CAS  Google Scholar 

  36. Chang H, Zhang T, Dang H, Chen X, You Y, Schwank J, Li J (2018) Fe2O3@SiTi core-shell catalyst for the selective catalytic reduction of NOx with NH3: activity improvement and HCl tolerance. Catal Sci Technol 8:3313–3320

    Article  CAS  Google Scholar 

  37. Fang Q, Liang X (2012) CeO2-Al2O3, CeO2-SiO2, CeO2-TiO2 core-shell spheres: formation mechanisms and UV absorption. RSC Adv 2:5370–5375

    Article  CAS  Google Scholar 

  38. Yu Y, Zhang J, Chen C, Ma M, He C, Miao J, Li H, Chen J (2020) Selective catalytic reduction of NOx with NH3 over TiO2 supported metal sulfate catalysts prepared via a sol-gel protocol. New J Chem 44:13598–13605

    Article  CAS  Google Scholar 

  39. Muhammad A, Nafarizal N, Shadiullah MK, Chin F (2020) Surface Study of CuO Nanopetals by Advanced Nanocharacterization Techniques with Enhanced Optical and Catalytic Properties. Nanomaterials 10:1298

    Article  CAS  Google Scholar 

  40. Tian F, Zhang Y, Zhang J, Pan C (2012) Raman Spectroscopy: A New Approach to Measure the Percentage of Anatase TiO2 Exposed (001) Facets. J Phys Chem C 116:7515–7519

    Article  CAS  Google Scholar 

  41. Zhu Q, Peng Y, Lin L, Fan C, Gao G, Wang R, Xu A (2014) Stable blue TiO2-x nanoparticles for efficient visible light photocatalysts. J Mater Chem A 2:4429–4437

    Article  CAS  Google Scholar 

  42. Wu Z, Jin R, Liu Y, Wang H (2008) Ceria modified MnOx/TiO2 as a superior catalyst for NO reduction with NH3 at low-temperature. Catal Commun 9:2217–2220

    Article  CAS  Google Scholar 

  43. Ettireddy P, Ettireddy N, Mamedov S, Boolchand P, Smirniotis P (2007) Surface characterization studies of TiO2 supported manganese oxide catalysts for low temperature SCR of NO with NH3. Appl Catal B Environ 76:123–134

    Article  CAS  Google Scholar 

  44. Gao X, Jiang Y, Zhong Y, Luo Z, Cen K (2010) The activity and characterization of CeO2-TiO2 catalysts prepared by the sol-gel method for selective catalytic reduction of NO with NH3. J Hazard Mate 1749:734–739

    Article  CAS  Google Scholar 

  45. Yang N, Guo R, Pan W, Chen Q, Wang Q, Lu C (2016) The promotion effect of Sb on the Na resistance of Mn/TiO2 catalyst for selective catalytic reduction of NO with NH3. Fuel 169:87–92

    Article  CAS  Google Scholar 

  46. Guerrero S, Guzman I, Aguila G, Araya P (2009) Sodium-promoted NO adsorption under lean conditions over Cu/TiO2 catalysts. Catal Commun 11:38–42

    Article  CAS  Google Scholar 

  47. Li W, Yang R, Krist K, Regalbuto J (1997) Selective adsorption of NOx from hot combustion gases by Ce-doped CuO/TiO2. Energy Fuels 11:428–432

    Article  CAS  Google Scholar 

  48. Jiang X, Ding G, Lou L, Chen Y, Zheng X (2004) Catalytic activities of CuO/TiO2 and CuO-ZrO2/TiO2 in NO+CO reaction. J Mol Catal A Chem 218:187–195

    Article  CAS  Google Scholar 

  49. Kang M, Park E, Kim J, Yie J (2007) Manganese oxide catalysts for NOx reduction with NH3 at low temperatures. Appl Catal A Gen 327:261–269

    Article  CAS  Google Scholar 

  50. Yao X, Zhang L, Li L, Liu L, Cao Y, Dong X, Gao F, Deng Y, Tang C, Chen Z, Dong L, Chen Y (2014) Investigation of the structure, acidity, and catalytic performance of CuO/Ti0.95Ce0.05O2 catalyst for the selective catalytic reduction of NO by NH3 at low temperature. Appl Catal B Environ 150:315–329

    Article  CAS  Google Scholar 

  51. Ma S, Zhao X, Li Y, Zhang T, Yuan F, Niu X, Zhu Y (2019) Effect of W on the acidity and redox performance of the Cu0.02Fe0.2WaTiOx (a=0.01,0.02,0.03) catalysts for NH3-SCR of NO. Appl Catal B Environ 248:226–238

    Article  CAS  Google Scholar 

  52. Jiang H, Wang Q, Wang H, Chen Y, Zhang M (2016) MOF-74 as an Efficient Catalyst for the Low-Temperature Selective Catalytic Reduction of NOx with NH3. ACS Appl Mater Interfaces 8:26817–26826

    Article  CAS  PubMed  Google Scholar 

  53. Jiang B, Wu Z, Liu Y, Lee S, Ho W (2010) DRIFT study of the SO2 effect on low-temperature SCR reaction over Fe-Mn/TiO2. J Phys Chem C 114:4961–4965

    Article  CAS  Google Scholar 

  54. Kijlstra W, Brands D, Poels E, Bliek A (1997) Mechanism of the selective catalytic reduction of NO by NH3 over MnOx/Al2O3. J Catal 171:219–230

    Article  CAS  Google Scholar 

  55. Zhang Q, Fan J, Ning P, Song Z, Liu X, Wang L, Wang J, Wang H, Long K (2018) In situ DRIFTS investigation of NH3-SCR reaction over CeO2/zirconium phosphate catalyst. Appl Surf Sci 435:1037–1045

    Article  CAS  Google Scholar 

  56. Liu X, Yu Q, Chen H, Jiang P, Li J, Shen Z (2020) The promoting effect of S-doping on the NH3-SCR performance of MnOx/TiO2 catalyst. Appl Surf Sci 508:144694

    Article  CAS  Google Scholar 

  57. Koebel M, Madia G, Raimondi F, Wokaun A (2002) Enhanced reoxidation of vanadia by NO2 in the fast SCR reaction. J Catal 209:159–165

    Article  CAS  Google Scholar 

  58. Hadjiivanov K (2000) Identification of neutral and charged NxOy surface species by IR spectroscopy. Catal Rev Sci Eng 42:71–144

    Article  CAS  Google Scholar 

  59. Gao E, Pan H, Zhang W, Li Y, Cao G, Bernardsd M, He Y, Shi Y (2020) Insights on the mechanism of enhanced selective catalytic reduction of NO with NH3 over Zr-doped MnCr2O4: A combination of in situ DRIFTS and DFT. Chem Eng J 386:123956

    Article  CAS  Google Scholar 

  60. Zhang L, Qu H, Du T, Ma W, Zhong Q (2016) H2O and SO2 tolerance, activity and reaction mechanism of sulfated Ni-Ce-La composite oxide nanocrystals in NH3-SCR. Chem Eng J 296:122–131

    Article  CAS  Google Scholar 

  61. Ma L, Cheng Y, Cavataio G, McCabe R, Fu L, Li J (2014) In Situ DRIFTS and Temperature-Programmed Technology Study on NH3-SCR of NOx over Cu-SSZ-13 and Cu-SAPO-34 Catalysts. Appl Catal B Environ 156:428–437

    Article  CAS  Google Scholar 

  62. Yu Y, Miao J, Wang J, He C, Chen J (2017) Facile synthesis of CuSO4/TiO2 catalysts with superior activity and SO2 tolerance for NH3-SCR: physicochemical properties and reaction mechanism. Catal Sci Tcchnol 7:1590–1601

    Article  CAS  Google Scholar 

  63. Wu X, Meng H, Du Y, Liu J, Hou B, Xie X (2020) Insight into Cu2O/CuO collaboration in the selective catalytic reduction of NO with NH3: Enhanced activity and synergistic mechanism. J Catal 384:72–87

    Article  CAS  Google Scholar 

  64. Li J, Li S (2007) New insight into selective catalytic reduction of nitrogen oxides by ammonia over H-form zeolites: a theoretical study. Phys Chem Chem Phys 9:3304–3311

    Article  CAS  PubMed  Google Scholar 

  65. Chen Y, Zhang Z, Liu L, Mi L, Wang X (2016) In situ DRIFTS studies on MnOx nanowires supported by activated semi-coke for low temperature selective catalytic reduction of NOx with NH3. Appl Surf Sci 366:139–147

    Article  CAS  Google Scholar 

  66. Góra-Marek K, Brylewska K, Tarach K, Rutkowska M (2015) IR studies of Fe modified ZSM-5 zeolites of diverse mesopore topologies in the terms of their catalytic performance in NH3-SCR and NH3-SCO processes. Appl Catal B Environ 179:589–598

    Article  CAS  Google Scholar 

  67. Wang Z, Guo R, Shi X, Pan W, Liu J, Sun X, Liu S, Liu X, Qin H (2019) The enhanced performance of Sb-modified Cu/TiO2 catalyst for selective catalytic reduction of NOx with NH3. Appl Surf Sci 475:334–341

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of National Natural Science Foundation of China (21906127, 21876139), Natural Science Foundation of Shaanxi Province, China (2019JQ-502), the Key R&D Program of Shaanxi Province (2019SF-244, 2019ZDLSF05-05-02).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanke Yu or Chi He.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Tian, H., Yu, Y. et al. Novel CuO@TiO2 Core–Shell Nanostructure Catalyst for Selective Catalytic Reduction of NOx with NH3. Catal Lett 151, 2502–2512 (2021). https://doi.org/10.1007/s10562-020-03515-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03515-2

Keywords

Navigation