Skip to main content
Log in

A Two-Step Model of Human Entrainment: A Quantitative Study of Circadian Period and Phase of Entrainment

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

One of the essential characteristics of an authentic circadian clock is that the free-running period sustains an approximately 24-hour cycle. When organisms are exposed to an external stimulus, the endogenous oscillators synchronize to the cycling environment signal in a process known as entrainment. These environmental cues perform an important role in resetting the phase and period of the circadian clock. A “generalized assumption” states that when an organism has a short period, it will experience a phase advance, while an organism with a long period experiences a phase delay. Despite widespread use, this positive relationship relating period to the phase of entrainment does not describe all known experimental data. We developed a two-step entrainment model to explain a broader range of results as well as provide more quantitative analysis. We prove existence and stability of periodic orbits and given analytical solutions of the range of entrainment, fit the phase trajectory over the entire entrainment process to data from a published study for 12 subjects in extended day cycles, i.e., longer than 24 h. Our simulations closely replicated the phase data and predicted correctly the phase of entrainment. We investigate the factors related to the rate of entrainment (ROE) and present the three-dimensional parameter spaces, illustrating the various behaviors of the phase of entrainment and ROE. Our findings can be applied to diagnostics and treatments for patients with sleep disorders caused by shift work or jet lag.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abraham U, Granada AE, Westermark PO, Heine M, Kramer A, Herzel H (2010) Coupling governs entrainment range of circadian clocks. Mol Syst Biol 6(1):438

    Article  Google Scholar 

  • Aschoff J (1981) Freerunning and entrained circadian rhythms. In: Aschoff J (ed) Biological rhythms, Springer, Berlin, pp 81–93

  • Aschoff J, Pohl H (1978) Phase relations between a circadian rhythm and its zeitgeber within the range of entrainment. Naturwissenschaften 65(2):80–84

    Article  Google Scholar 

  • Bordyugov G, Abraham U, Granada A, Rose P, Imkeller K, Kramer A, Herzel H (2015) Tuning the phase of circadian entrainment. J Royal Soc Interface 12(108):20150282

    Article  Google Scholar 

  • Darrah C, Taylor BL, Edwards KD, Brown PE, Hall A, McWatters HG (2006) Analysis of phase of luciferase expression reveals novel circadian quantitative trait loci in arabidopsis. Plant Physiol 140(4):1464–1474

    Article  Google Scholar 

  • Duffy JF, Czeisler CA (2002) Age-related change in the relationship between circadian period, circadian phase, and diurnal preference in humans. Neurosci Lett 318(3):117–120

    Article  Google Scholar 

  • Duffy JF, Dijk DJ, Klerman EB, Czeisler CA (1998) Later endogenous circadian temperature nadir relative to an earlier wake time in older people. Am J Physiol-Regul Integr Comp Physiol 275(5):R1478–R1487

    Article  Google Scholar 

  • Duffy JF, Cain SW, Chang AM, Phillips AJ, Münch MY, Gronfier C, Wyatt JK, Dijk DJ, Wright KP, Czeisler CA (2011) Sex difference in the near-24-hour intrinsic period of the human circadian timing system. Proc Natl Acad Sci 108(Supplement 3):15602–15608

    Article  Google Scholar 

  • Dunlap JC, Loros JJ (2017) Making time: conservation of biological clocks from fungi to animals. Microbiol Spect 5(3):515–534

    Google Scholar 

  • Granada AE, Bordyugov G, Kramer A, Herzel H (2013) Human chronotypes from a theoretical perspective. PLoS One 8(3):e59464

    Article  Google Scholar 

  • Gronfier C, Wright KP, Kronauer RE, Czeisler CA (2007) Entrainment of the human circadian pacemaker to longer-than-24-h days. Proc Natl Acad Sci 104(21):9081–9086

    Article  Google Scholar 

  • Heintzen C, Liu Y (2007) The neurospora crassa circadian clock. Adv Genet 58:25–66

    Article  Google Scholar 

  • Hida A, Ohsawa Y, Kitamura S, Nakazaki K, Ayabe N, Motomura Y, Matsui K, Kobayashi M, Usui A, Inoue Y et al (2017) Evaluation of circadian phenotypes utilizing fibroblasts from patients with circadian rhythm sleep disorders. Trans Psychiatr 7(4):e1106

    Article  Google Scholar 

  • Hoffmann K (1963) Zur beziehung zwischen phasenlage und spontanfrequenz bei der endogenen tagesperiodik. Z für Naturforschung B 18(2):154–157

    Article  Google Scholar 

  • Jones CR, Campbell SS, Zone SE, Cooper F, DeSano A, Murphy PJ, Jones B, Czajkowski L, Ptček LJ (1999) Familial advanced sleep-phase syndrome: a short-period circadian rhythm variant in humans. Nat Med 5(9):1062–1065

    Article  Google Scholar 

  • Kandalepas PC, Mitchell JW, Gillette MU (2016) Melatonin signal transduction pathways require e-box-mediated transcription of per1 and per2 to reset the scn clock at dusk. PloS one 11(6):e0157824

    Article  Google Scholar 

  • Kim DW, Chang C, Chen X, Doran AC, Gaudreault F, Wager T, DeMarco GJ, Kim JK (2019) Systems approach reveals photosensitivity and per 2 level as determinants of clock-modulator efficacy. Mol Syst Biol 15(7):e8838

    Article  Google Scholar 

  • Kronauer RE, Czeisler CA, Pilato SF, Moore-Ede MC, Weitzman ED (1982) Mathematical model of the human circadian system with two interacting oscillators. Am J Physiol-Regul, Integr Comp Physiol 242(1):R3–R17

    Article  Google Scholar 

  • Kuramoto Y (1984) Cooperative dynamics of oscillator communitya study based on lattice of rings. Prog Theor Phys Suppl 79:223–240

    Article  Google Scholar 

  • Kurien P, Hsu PK, Leon J, Wu D, McMahon T, Shi G, Xu Y, Lipzen A, Pennacchio LA, Jones CR et al (2019) Timeless mutation alters phase responsiveness and causes advanced sleep phase. Proc Natl Acad Sci 116(24):12045–12053

    Google Scholar 

  • Lee K, Shiva Kumar P, McQuade S, Lee JY, Park S, An Z, Piccoli B (2017) Experimental and mathematical analyses relating circadian period and phase of entrainment in neurospora crassa. J Biol Rhythm 32(6):550–559

    Article  Google Scholar 

  • Lewy AJ, Hasler BP, Emens JS, Sack RL (2001) Pretreatment circadian period in free-running blind people may predict the phase angle of entrainment to melatonin. Neurosci Lett 313(3):158–160

    Article  Google Scholar 

  • Loros JJ, Dunlap JC (2001) Genetic and molecular analysis of circadian rhythms in n eurospora. Ann Rev Physiol 63(1):757–794

    Article  Google Scholar 

  • Lowrey PL, Shimomura K, Antoch MP, Yamazaki S, Zemenides PD, Ralph MR, Menaker M, Takahashi JS (2000) Positional syntenic cloning and functional characterization of the mammalian circadian mutation tau. Science 288(5465):483–491

    Article  Google Scholar 

  • Michael TP, Salome PA, Hannah JY, Spencer TR, Sharp EL, McPeek MA, Alonso JM, Ecker JR, McClung CR (2003) Enhanced fitness conferred by naturally occurring variation in the circadian clock. Science 302(5647):1049–1053

    Article  Google Scholar 

  • Phillips AJ, Vidafar P, Burns AC, McGlashan EM, Anderson C, Rajaratnam SM, Lockley SW, Cain SW (2019) High sensitivity and interindividual variability in the response of the human circadian system to evening light. Proc Natl Acad Sci 116(24):12019–12024

    Google Scholar 

  • Pittendrigh CS, Kyner WT, Takamura T (1991) The amplitude of circadian oscillations: temperature dependence, latitudinal clines, and the photoperiodic time measurement. J Biol Rhythm 6(4):299–313

    Article  Google Scholar 

  • Roenneberg T, Merrow M (2016) The circadian clock and human health. Current Biol 26(10):R432–R443

    Article  Google Scholar 

  • Roenneberg T, Daan S, Merrow M (2003) The art of entrainment. J Biol Rhythm 18(3):183–194

    Article  Google Scholar 

  • Roenneberg T, Hut R, Daan S, Merrow M (2010) Entrainment concepts revisited. J Biol Rhythm 25(5):329–339

    Article  Google Scholar 

  • Saunders D, Gillanders S, Lewis R (1994) Light-pulse phase response curves for the locomotor activity rhythm in period mutants of drosophila melanogaster. J Insect Physiol 40(11):957–968

    Article  Google Scholar 

  • Schmal C, Myung J, Herzel H, Bordyugov G (2015) A theoretical study on seasonality. Front Neurol 6:94

    Google Scholar 

  • Serkh K, Forger DB (2014) Optimal schedules of light exposure for rapidly correcting circadian misalignment. PLoS Comput Biol 10(4):e1003523

    Article  Google Scholar 

  • Stelling J, Gilles ED, Doyle FJ (2004) Robustness properties of circadian clock architectures. Proc Natl Acad Sci 101(36):13210–13215

    Article  Google Scholar 

  • To TL, Henson MA, Herzog ED, Doyle FJ III (2007) A molecular model for intercellular synchronization in the mammalian circadian clock. Biophys J 92(11):3792–3803

    Article  Google Scholar 

  • Tokuda IT, Schmal C, Ananthasubramaniam B, Herzel H (2020) Conceptual models of entrainment, jet lag, and seasonality. Front Physiol 11:334

    Article  Google Scholar 

  • Wright KP, Hughes RJ, Kronauer RE, Dijk DJ, Czeisler CA (2001) Intrinsic near-24-h pacemaker period determines limits of circadian entrainment to a weak synchronizer in humans. Proc Natl Acad Sci 98(24):14027–14032

    Article  Google Scholar 

  • Xu Y, Padiath QS, Shapiro RE, Jones CR, Wu SC, Saigoh N, Saigoh K, Ptáček LJ, Fu YH (2005) Functional consequences of a cki\(\delta \) mutation causing familial advanced sleep phase syndrome. Nature 434(7033):640–644

    Article  Google Scholar 

  • Zehring WA, Wheeler DA, Reddy P, Konopka RJ, Kyriacou CP, Rosbash M, Hall JC (1984) P-element transformation with period locus dna restores rhythmicity to mutant, arrhythmic drosophila melanogaster. Cell 39(2):369–376

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge Dr. Hanspeter Herzel for his constructive advice and suggestions. We also thank Dr. Sean T. McQuade and Caleb Robelle for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benedetto Piccoli.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, Z., Merrill, N.J., Lee, K. et al. A Two-Step Model of Human Entrainment: A Quantitative Study of Circadian Period and Phase of Entrainment. Bull Math Biol 83, 12 (2021). https://doi.org/10.1007/s11538-020-00829-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11538-020-00829-5

Keywords

Navigation