Skip to main content
Log in

Noise in Mesoscopic Systems

  • Condensed Matter
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

In the foreground of contemporary physics, the role of chaos and order concomitantly present in physical systems is experimentally and theoretically well-grounded. The ubiquity of chaos and order in systems that include atomic nuclei and artificial atoms, among others, imposes the central question about the conceptual common element to all of them. Professor Mahir Saleh Hussein contributed to all these scenarios, investigating them predominantly in the light of the random matrix theory (RMT). All of these systems can support the universality of fundamental symmetries described by RMT and, therefore, mesoscopic systems composed of atomic confined aggregates can emulate scattering phenomena on smaller scales such as those of atomic nuclei. Mesoscopic systems can be controlled and create confinement phenomena that encompass the fundamental Wigner-Dyson symmetries as well as all others categorized by Cartan. In particular, among other results, the studies with Professor Mahir Saleh Hussein, presented in this investigation, demonstrated that the shot noise power can categorize not only the Wigner-Dyson classes, through the accumulation of spin in electronic reservoirs, but also the chiral classes, through scattering in graphene nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M.S. Hussein, J.G.G.S. Ramos, Universal fluctuations and coherence lengths in chaotic mesoscopic systems and nuclei. AIP Conference Proceedings. 1912(1), 020007 (2017). https://doi.org/10.1063/1.5016132. https://aip.scitation.org/doi/abs/10.1063/1.5016132

    Article  Google Scholar 

  2. J.G.G.S. Ramos, A.L.R. Barbosa, B.V. Carlson, T. Frederico, M.S. Hussein, Correlation functions and correlation widths in quantum-chaotic scattering for mesoscopic systems and nuclei. Phys. Rev. E. 93, 012210 (2016). https://doi.org/10.1103/PhysRevE.93.012210. https://link.aps.org/doi/10.1103/PhysRevE.93.012210

    Article  ADS  Google Scholar 

  3. J.G.G.S. Ramos, M.S. Hussein, A.L.R. Barbosa, Fluctuation phenomena in chaotic dirac quantum dots: Artificial atoms on graphene flakes. Phys. Rev. B. 93, 125136 (2016). https://doi.org/10.1103/PhysRevB.93.125136. https://link.aps.org/doi/10.1103/PhysRevB.93.125136https://link.aps.org/doi/10.1103/PhysRevB.93.125136

    Article  ADS  Google Scholar 

  4. J.G.G.S. Ramos, A.L.R. Barbosa, M.S. Hussein, Quantum interference effects for the electronic fluctuations in quantum dots. Braz. J. Phys. 44, 223 (2014). https://doi.org/10.1007/s13538-014-0181-2. https://link.springer.com/article/10.1007%2Fs13538-014-0181-2https://link.springer.com/article/10.1007%2Fs13538-014-0181-2

    Article  ADS  Google Scholar 

  5. J.G.G.S. Ramos, D. Bazeia, M.S. Hussein, C.H. Lewenkopf, Conductance peaks in open quantum dots. Phys. Rev. Lett. 107, 176807 (2011). https://doi.org/10.1103/PhysRevLett.107.176807. https://link.aps.org/doi/10.1103/PhysRevLett.107.176807

    Article  ADS  Google Scholar 

  6. W. Hauser, H. Feshbach, The inelastic scattering of neutrons. Phys. Rev. 87, 366–373 (1952). https://doi.org/10.1103/PhysRev.87.366. https://link.aps.org/doi/10.1103/PhysRev.87.366

    Article  ADS  MATH  Google Scholar 

  7. T. Ericson, Fluctuations of nuclear cross sections in the “continuum” region. Phys. Rev. Lett. 5, 430–431 (1960). https://doi.org/10.1103/PhysRevLett.5.430. https://link.aps.org/doi/10.1103/PhysRevLett.5.430

    Article  ADS  Google Scholar 

  8. A.L.R. Barbosa, M.S. Hussein, J.G.G.S. Ramos, Anticorrelation for conductance fluctuations in chaotic quantum dots. Phys. Rev. E. 88, 010901 (2013). https://doi.org/10.1103/PhysRevE.88.010901. https://link.aps.org/doi/10.1103/PhysRevE.88.010901

    Article  ADS  Google Scholar 

  9. J.G.G.S. Ramos, A.L.R. Barbosa, D. Bazeia, M.S. Hussein, C.H. Lewenkopf, Generalized correlation functions for conductance fluctuations and the mesoscopic spin Hall effect. Phys. Rev. B. 86, 235112 (2012). https://doi.org/10.1103/PhysRevB.86.235112. https://link.aps.org/doi/10.1103/PhysRevB.86.235112

    Article  ADS  Google Scholar 

  10. A. Altland, M.R. Zirnbauer, Random matrix theory of a chaotic andreev quantum dot. Phys. Rev. Lett. 76, 3420–3423 (1996). https://doi.org/10.1103/PhysRevLett.76.3420. https://link.aps.org/doi/10.1103/PhysRevLett.76.3420

    Article  ADS  Google Scholar 

  11. M.R. Zirnbauer, Supersymmetry for systems with unitary disorder: circular ensembles. J. Phys. A Math. Gen. 29(22), 7113–7136 (1996). https://doi.org/10.1088/0305-4470/29/22/013

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. J.J.M. Verbaarschot, I. Zahed, Spectral density of the qcd dirac operator near zero virtuality. Phys. Rev. Lett. 70, 3852–3855 (1993). https://doi.org/10.1103/PhysRevLett.70.3852. https://link.aps.org/doi/10.1103/PhysRevLett.70.3852

    Article  ADS  Google Scholar 

  13. R. Hanson, L.P. Kouwenhoven, J.R. Petta, S. Tarucha, L.M.K. Vandersypen, Spins in few-electron quantum dots. Rev. Mod. Phys. 79, 1217–1265 (2007). https://doi.org/10.1103/RevModPhys.79.1217. https://link.aps.org/doi/10.1103/RevModPhys.79.1217

    Article  ADS  Google Scholar 

  14. F.H. Koppens, C. Buizert, K.J. Tielrooij, I.T. Vink, N K.C., T. Meunier, L.P. Kouwenhoven, L.M. Vandersypen, Driven coherent oscillations of a single electron spin in a quantum dot. Nature. 442, 766–771 (2006). https://doi.org/10.1038/nature05065. https://www.nature.com/articles/nature05065

    Article  ADS  Google Scholar 

  15. A. Fert, Nobel lecture: Origin, development, and future of spintronics. Rev. Mod. Phys. 80, 1517–1530 (2008). https://doi.org/10.1103/RevModPhys.80.1517. https://link.aps.org/doi/10.1103/RevModPhys.80.1517https://link.aps.org/doi/10.1103/RevModPhys.80.1517

    Article  ADS  Google Scholar 

  16. D. Awschalom, M Flatté, Challenges for semiconductor spintronics. Nature Phys. 3, 153–159 (2007). https://doi.org/10.1038/nphys551. https://www.nature.com/articles/nphys551

    Article  ADS  Google Scholar 

  17. R. Hanson, L.P. Kouwenhoven, J.R. Petta, S. Tarucha, L.M.K. Vandersypen, Spins in few-electron quantum dots. Rev. Mod. Phys. 79, 1217–1265 (2007). https://doi.org/10.1103/RevModPhys.79.1217. https://link.aps.org/doi/10.1103/RevModPhys.79.1217

    Article  ADS  Google Scholar 

  18. S. Gustavsson, R. Leturcq, M. Studer, I. Shorubalko, T. Ihn, K. Ensslin, D.C. Driscoll, A.C. Gossard, Electron counting in quantum dots. Surf. Sci. Rep. 64(6), 191–232 (2009). https://doi.org/10.1016/j.surfrep.2009.02.001. http://www.sciencedirect.com/science/article/pii/S0167572909000193http://www.sciencedirect.com/science/article/pii/S0167572909000193

    Article  ADS  Google Scholar 

  19. P.A. Grünberg, Nobel lecture: From spin waves to giant magnetoresistance and beyond. Rev. Mod. Phys. 80, 1531–1540 (2008). https://doi.org/10.1103/RevModPhys.80.1531. https://link.aps.org/doi/10.1103/RevModPhys.80.1531

    Article  ADS  Google Scholar 

  20. C.W.J. Beenakker, Random-matrix theory of quantum transport. Rev. Mod. Phys. 69, 731–808 (1997). https://doi.org/10.1103/RevModPhys.69.731. https://link.aps.org/doi/10.1103/RevModPhys.69.731

    Article  ADS  Google Scholar 

  21. J. Meair, P. Stano, P. Jacquod, Measuring spin accumulations with current noise. Phys. Rev. B. 84, 073302 (2011). https://doi.org/10.1103/PhysRevB.84.073302. https://link.aps.org/doi/10.1103/PhysRevB.84.073302

    Article  ADS  Google Scholar 

  22. M.L. Mehta, Vol. 142. Random matrices, 3rd edn. (Academic Press, Cambridge, 2004). The address

    Google Scholar 

  23. M.R. Zirnbauer, Symmetry classes (2010)

  24. C-K Chiu, J.C.Y. Teo, A.P. Schnyder, S. Ryu, Classification of topological quantum matter with symmetries. Rev. Mod. Phys. 88, 035005 (2016). https://doi.org/10.1103/RevModPhys.88.035005. https://link.aps.org/doi/10.1103/RevModPhys.88.035005

    Article  ADS  Google Scholar 

  25. A. Altland, M.R. Zirnbauer, Nonstandard symmetry classes in mesoscopic normal-superconducting hybrid structures. Phys. Rev. B. 55, 1142–1161 (1997). https://doi.org/10.1103/PhysRevB.55.1142. https://link.aps.org/doi/10.1103/PhysRevB.55.1142

    Article  ADS  Google Scholar 

  26. S. Das Sarma, S. Adam, E.H. Hwang, E. Rossi, Electronic transport in two-dimensional graphene. Rev. Mod. Phys. 83, 407–470 (2011). https://doi.org/10.1103/RevModPhys.83.407. https://link.aps.org/doi/10.1103/RevModPhys.83.407

    Article  ADS  Google Scholar 

  27. H. Min, A.H. MacDonald, Chiral decomposition in the electronic structure of graphene multilayers. Phys. Rev. B. 77, 155416 (2008). https://doi.org/10.1103/PhysRevB.77.155416. https://link.aps.org/doi/10.1103/PhysRevB.77.155416

    Article  ADS  Google Scholar 

  28. J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, C.M. Soukoulis, Negative refractive index due to chirality. Phys. Rev. B. 79, 121104 (2009). https://doi.org/10.1103/PhysRevB.79.121104. https://link.aps.org/doi/10.1103/PhysRevB.79.121104

    Article  ADS  Google Scholar 

  29. Y.M. Blanter, M. Büttiker, Shot noise in mesoscopic conductors. Phys. Rep. 336(1), 1–166 (2000). https://doi.org/10.1016/S0370-1573(99)00123-4. http://www.sciencedirect.com/science/article/pii/S0370157399001234

    Article  ADS  Google Scholar 

  30. J.G.G.S. Ramos, A.L.R. Barbosa, D. Bazeia, M.S. Hussein, Spin accumulation encoded in electronic noise for mesoscopic billiards with finite tunneling rates. Phys. Rev. B. 85, 115123 (2012). https://doi.org/10.1103/PhysRevB.85.115123. https://link.aps.org/doi/10.1103/PhysRevB.85.115123

    Article  ADS  Google Scholar 

  31. J.G.G.S. Ramos, A.L.R. Barbosa, A M S Macêdo, Quantum interference correction to the shot-noise power in nonideal chaotic cavities. Phys. Rev. B. 78, 235305 (2008). https://doi.org/10.1103/PhysRevB.78.235305. https://link.aps.org/doi/10.1103/PhysRevB.78.235305https://link.aps.org/doi/10.1103/PhysRevB.78.235305

    Article  ADS  Google Scholar 

  32. A.L.R. Barbosa, J.G.G.S. Ramos, A M S Macêdo, Average shot-noise power via a diagrammatic method. J. Phys. A Math. Theor. 43(7), 075101 (2010). https://doi.org/10.1088%2F1751-8113%2F43%2F7%2F075101

    Article  ADS  MATH  Google Scholar 

  33. J.G.G.S. Ramos, A.L.R. Barbosa, A M S Macêdo, Tunable crossovers for the quantum interference correction to conductance and shot-noise power in chaotic quantum dots with nonideal contacts. Phys. Rev. B. 84, 035453 (2011). https://doi.org/10.1103/PhysRevB.84.035453. https://link.aps.org/doi/10.1103/PhysRevB.84.035453

    Article  ADS  Google Scholar 

  34. A.L.R. Barbosa, J.G.G.S. Ramos, D. Bazeia, Crossover of thermal to shot noise in chaotic cavities. EPL (Europhysics Letters). 93(6), 67003 (2011). https://doi.org/10.1209/0295-5075/93/67003

    Article  ADS  Google Scholar 

  35. R.S. Whitney, Suppression of weak localization and enhancement of noise by tunneling in semiclassical chaotic transport. Phys. Rev. B. 75, 235404 (2007). https://doi.org/10.1103/PhysRevB.75.235404. https://link.aps.org/doi/10.1103/PhysRevB.75.235404

    Article  ADS  Google Scholar 

  36. A.L.R. Barbosa, J.G.G.S. Ramos, D. Bazeia, Presence of asymmetric noise in multiterminal chaotic cavities. Phys. Rev. B. 84, 115312 (2011). https://doi.org/10.1103/PhysRevB.84.115312. https://link.aps.org/doi/10.1103/PhysRevB.84.115312

    Article  ADS  Google Scholar 

  37. C. Beenakker, C Schönenberger, Quantum shot noise. Phys. Today. 56, 37 (2003). https://doi.org/10.1063/1.1583532. https://physicstoday.scitation.org/doi/10.1063/1.1583532

    Article  ADS  Google Scholar 

  38. A M S Macêdo, A.M.C. Souza, Universal fano factor and anomalous IV characteristics in weakly interacting quantum dots. Phys. Rev. B. 72, 165340 (2005). https://doi.org/10.1103/PhysRevB.72.165340. https://link.aps.org/doi/10.1103/PhysRevB.72.165340

    Article  ADS  Google Scholar 

  39. M.S.M. Barros, I.R.A.C. Lucena, A.F.M.R. Silva, A.L.R. Barbosa, J.G.G.S. Ramos, Shot noise on chaotic chiral devices. Phys. Rev. B. 99, 195131 (2019). https://doi.org/10.1103/PhysRevB.99.195131. https://link.aps.org/doi/10.1103/PhysRevB.99.195131

    Article  ADS  Google Scholar 

  40. V.K. Sangwan, M.C. Hersam, Electronic transport in two-dimensional materials. Annu. Rev. Phys. Chem. 69(1), 299–325 (2018). https://doi.org/10.1146/annurev-physchem-050317-021353. PMID: 29463170

    Article  ADS  Google Scholar 

  41. E.R. Mucciolo, C.H. Lewenkopf, Disorder and electronic transport in graphene. J. Phys.: Condens. Matter. 22(27), 273201 (2010). https://doi.org/10.1088/0953-8984/22/27/273201

    ADS  Google Scholar 

  42. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009). https://doi.org/10.1103/RevModPhys.81.109. https://link.aps.org/doi/10.1103/RevModPhys.81.109

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The work is supported by the Brazilian agencies Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Amparo a Ciência e Tecnologia do Estado de Pernambuco (FACEPE), and by Fundação de Apoio à Pesquisa do Estado da Paraíba (FAPESQ-PB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. G. G. S. Ramos.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barbosa, A.L.R., Lucena, I.R.A.C. & Ramos, J.G.G.S. Noise in Mesoscopic Systems. Braz J Phys 51, 204–211 (2021). https://doi.org/10.1007/s13538-020-00838-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-020-00838-8

Keywords

PACS

Navigation