Skip to main content

Advertisement

Log in

Prospective evaluation of xylitol production using Dabaryomyces hansenii var hansenii, Pachysolen tannophilus, and Candida guillermondii with sustainable agricultural residues

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

In this study, agro-wastes, including corncob, rice straw, and wheat straw, were used as substrate for xylitol production using Dabaryomyces hansenii var hansenii, Pachysolen tannophilus, and Candida guillermondii. The experiments were performed using batch fermentation using hemicellulose hydrolyzate as substrate under optimum levels of the screened significant nutrients and process variables. Screening and optimization were carried out for all the systems using statistical methods based on experimental designs. Kinetics and modeling for xylitol production were developed using the logistic model for microbial growth, substrate utilization kinetics for the substrate utilization, and Luedeking-Piret model for the product formation. The model parameters were compared for all xylitol production carried out using pretreated hemicellulose hydrolyzates from corncob, rice straw, and wheat straw. Experimental analysis and modeling results revealed a maximum xylitol yield when corncob was hydrolyzed with Pachysolen tannophilus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Werpy T, Petersen G (2004) Top value added chemicals from biomass: results of screening for potential candidates from sugars and synthesis gas. Technical report, Vol. I, National Renewable Energy Lab, Golden, CO, US Department of Energy, United States

  2. Sibhatu HK, Anuradha Jabasingh S, Yimam A, Ahmed S (2021) Ferulic acid production from brewery spent grains, an agro-industrial waste. LWT Food Sci Technol 135:110009

    Article  Google Scholar 

  3. Molwitz M, Silva SS, Ribeiro JD, Roberto IC, Felipe MGA, Prata AMR, Mancilha IM (1996) Aspects of the cell growth of Candida guilliermondii in sugar cane bagasse hydrolyzate. ZNaturforsch 51:404–408

    Google Scholar 

  4. Du C, Li Y, Zong H, Yuan TG, Yuan W, Jian Y (2020) Production of bioethanol and xylitol from non-detoxified corn cob via a two stage fermentation strategy. Bioresour Technol 310:123427

    Article  Google Scholar 

  5. Couto SR, Sanroman MA (2006) Application of solid-state fermentation to food industry-a review. J Food Eng 76:291–302

    Article  Google Scholar 

  6. Rao VL, Goli JK, Gentela J, Koti S (2016) Bioconversion of lignocellulosic biomass to xylitol: an overview. Bioresour Technol 213:299–310

    Article  Google Scholar 

  7. Anuradha Jabasingh S, Nachiyar CV (2011) Utilization of pretreated bagasse for the sustainable bioproduction of cellulase by Aspergillus nidulans MTCC344 using response surface methodology. Ind Crop Prod 34:1564–1571

    Article  Google Scholar 

  8. Anuradha Jabasingh S, Nachiyar CV (2012) Optimization of cellulase synthesis by RSM and evaluation of ethanol production from enzymatically hydrolyzed sugarcane bagasse using Saccharomyces cerevisiae. J Sci Ind Res 71:353–359

    Google Scholar 

  9. Zahed O, Jouzani GS, Abbasalizadeh S, Khodaiyan F, Tabatabaei M (2016) Continuous co-production of ethanol and xylitol from rice straw hydrolyzate in a membrane bioreactor. Folia Microbiol 61:179–189

    Article  Google Scholar 

  10. Anuradha Jabasingh S (2011) Utilization of pretreated coir pith for the optimized bioproduction of cellulase by Aspergillus nidulans. Int Biodeterior Biodegrad 65:1150–1160

    Article  Google Scholar 

  11. de Albuquerque TL, da Silva IJ, de Macedo GR, Rocha MVP (2014) Biotechnological production of xylitol from lignocellulosic wastes: a review. Process Biochem 49:1779–1789

    Article  Google Scholar 

  12. Xylitol-A Global Market Overview (2017) Industry experts. Hyderabad, India

    Google Scholar 

  13. Bar A (1986) Alternative sweeteners. In: O’Brien Nabors L, Gelardi R (eds) . Marcel Dekker, New York, pp 185–216

    Google Scholar 

  14. Aguirre-Zero O, Zero DT, Proskin HM (1993) Effect of chewing xylitol chewing gum on salivary flow rate and the acidogenic potential of dental plaque. Caries Res 27:55–59

    Article  Google Scholar 

  15. Parajo JC, Dominguez H, Dominguez M (1998) Biotechnological production of xylitol, part I: interest of xylitol and fundamentals of its biosynthesis. Bioresour Technol 65:191–201

    Article  Google Scholar 

  16. Cortez DV, Mussatto SI, Roberto IC (2016) Improvement on D-xylose to xylitol biotransformation by Candida guilliermondii using cells permeabilized with Triton X-100 and selected process conditions. Appl Biochem Biotechnol 180:969–979

    Article  Google Scholar 

  17. Kumar V, Sandhu PP, Ahluwalia V, Mishra BB, Yadav SK (2019) Improved upstream processing for detoxification and recovery of xylitol produced from corncob. Bioresour Technol 291:121931

    Article  Google Scholar 

  18. Tamburini E, Costa S, Marchetti MG, Pedrini P (2015) Optimized production of xylitol from xylose using a hyper-acidophilic Candida tropicalis. Biomolecules 5:1979–1989

    Article  Google Scholar 

  19. Dasgupta D, Bandhu S, Adhikari DK, Ghosh D (2017) Challenges and prospects of xylitol production with whole cell bio-catalysis: a review. Microbiol Res 197:9–21

    Article  Google Scholar 

  20. Pal S, Choudhary V, Kumar A, Biswas D, Mondal AK, Sahoo DK (2013) Studies on xylitol production by metabolic pathway engineered Debaryomyces hansenii. Bioresour Technol 147:449–455

    Article  Google Scholar 

  21. Izumovi K, Tuzaki K (1988) Production of xylitol from D-xylose by Micobacterium smegmatis. J Ferment Technol 66:33–36

    Article  Google Scholar 

  22. Rangaswamy S, Agblevor F (2002) Screening of facultative anaerobic bacteria utilizing D-xylose for xylitol production. Appl Microbiol Biotechnol 60:88–93

    Article  Google Scholar 

  23. Dahiya JS (1991) Xylitol production by Petromyces albertensis grown on medium containing D-xylose. Can J Microbiol 37:14–18

    Article  Google Scholar 

  24. Nishio N, Sugawa K, Hayase N, Nagai S (1989) Conversion of D-xylose into xylitol by immobilized cells of Candida peliculosa and Methanobacterium sp. HV. J Ferment Bioeng 67:35–60

    Article  Google Scholar 

  25. Meyrial V, Delgenes JP, Moletta R, Navarro JM (1991) Xylitol production from D-xylose by Candida guillermondii: fermentation behavior. Biotechnol Lett 13:281–286

    Article  Google Scholar 

  26. Vandeska E, Amartey S, Kuzmanova S, Jettries TW (1996) Fed batch culture for xylitol production by Candida biodinii. Process Biochem 31:265–270

    Article  Google Scholar 

  27. Domınguez JM, Gong CS, Tsao G (1997) Production of xylitol from D-xylose by Debaromyces hansenii. Appl Biochem Biotechnol 63:117–127

    Article  Google Scholar 

  28. Pal S, Mondal AK, Sahoo DK (2016) Molecular strategies for enhancing microbial production of xylitol. Process Biochem 51:809–819

    Article  Google Scholar 

  29. Kumdam HB, Murthy SN, Gummadi SN (2012) A statistical approach to optimize xylitol production by Debaryomyces nepalensis NCYC 3413 in vitro. Food Nutr Sci 3:1027

    Google Scholar 

  30. Zhang Q, Li Y, Xia L, Liu Z (2014) Enhanced xylitol production from statistically optimized fermentation of cotton stalk hydrolyzate by immobilized Candida tropicalis. Chem Biochem Eng Q 28:87–93

    Google Scholar 

  31. Ramesh S, Muthuvelayudham R, Rajesh Kannan R, Viruthagiri T (2012) Response surface optimization of medium composition for xylitol production by Debaryomyces hansenii var hanseii using corncob hemicellulose hydrolyzate. Chem Ind Chem Eng Q 12:72–72

    Google Scholar 

  32. Tizazu BZ, Moholkar VS (2018) Kinetic and thermodynamic analysis of dilute acid hydrolysis of sugarcane bagasse. Bioresour Technol 250:197–203

    Article  Google Scholar 

  33. Bilal M, Asgher M, Iqbal HMN, Hu H, Zhang X (2017) Biotransformation of lignocellulosic materials into value-added products-a review. Int J Biol Macromol 98:447–458

    Article  Google Scholar 

  34. Myers RH, Montgomery DC (1995) Surface methodology: process and product optimization using designed experiments, 1st edn. Wiley, New York

    MATH  Google Scholar 

  35. Montgomery DC (1997) Response surface methods and other approaches to process optimization. In: Montgomery DC (ed) Design and analysis of experiments. Wiley, New York, pp 427–510

    Google Scholar 

  36. Okpokwasili GC, Nweke CO (2005) Microbial growth and substrate utilization kinetics. Afr J Biotechnol 5:305–317

    Google Scholar 

  37. Subba Rao C, Sathish T, Pendyala B, Kumar TP, Prakasham RS (2008) Development of a mathematical model for Bacillus circulans growth and alkaline protease production kinetics. J Chem Technol Biotechnol 84:302–327

    Article  Google Scholar 

  38. Bailey JE, Ollis DF (1986) Biochemical engineering fundamentals. McGraw-Hill, New York

    Google Scholar 

  39. Assefa Y, Anuradha Jabasingh S (2020) Lactic acid production from brewer’s spent grain by Lactobacillus plantarum ATCC 8014. J Sci Ind Res 79:610–613

    Google Scholar 

  40. Sarrouh BF, de Freitas BR, da Silva SS (2009) Biotechnological production of xylitol: enhancement of monosaccharide production by post-hydrolysis of dilute acid sugarcane hydrolyzate. Appl Biochem Biotechnol 153:163–170

    Article  Google Scholar 

  41. Kumar S, Neelkant SK, Rakesh S, Jayalakshmi SK, Sreeramulu K (2020) Co-production of xylitol and ethanol by the fermentation of the lignocellulosic hydrolyzates of banana and water hyacinth leaves by individual yeast strains. Ind Crop Prod 155:112809

    Article  Google Scholar 

  42. Cinar A, Parcilekar SJ, Undey C, Birol G (2003) Batch fermentation modeling, monitoring, and control. New York, Marcel Dekker Inc

    Book  Google Scholar 

  43. Arellano-Plaza M, Herrera-López EJ, Díaz-Montaño DM, Moran A, Ramírez-Córdova JJ (2007) Unstructured kinetic model for tequila batch fermentation. Int J Math Comput Simul 1:1–6

    Google Scholar 

  44. Naveena BJ, Atlaf M, Bhadnah K, Reddy G (2005) Direct fermentation of starch to 1(+) lactic acid in SSF by Lactobacillus amylophilus GV6 using wheat bran as support and substrate: medium optimization using RSM. Process Biochem 40:681–690

    Article  Google Scholar 

  45. Aga WS, Fantaye SK, Anuradha Jabasingh S (2020) Biodiesel production from Ethiopian ‘Besana’- Croton macrostachyus seed: characterization and optimization. Renew Energy 157:574–584

    Article  Google Scholar 

  46. Preziosi-Belloy L, Nolleau V, Navarro JM (2000) Xylitol production from aspenwood hemicellulose hydrolyzate by Candida guilliermondii. Biotechnol Lett 22:239–243

    Article  Google Scholar 

  47. Sarvin BA, Seregin AP, Shpigun OA, Rodin IA, Stavrianidi AN (2018) A novel strategy for isolation and determination of sugars and sugar alcohols from conifers. J Chromatogr B 1092:138–144

    Article  Google Scholar 

  48. Mamo TZ, Dutta A, Anuradha Jabasingh S (2019) Start-up of a pilot scale anaerobic reactor for the biogas production from the pineapple processing industries of Belgium. Renew Energy 134:241–246

    Article  Google Scholar 

  49. Rodrigues RCLB, Graças AFMD, Silva JBAE, Vitolo M (2003) Response surface methodology for xylitol production from sugarcane bagasse hemicellulosic hydrolyzate using controlled vacuum evaporation process variables. Process Biochem 38:1231–1237

    Article  Google Scholar 

  50. Carvalho W, Canilha L, Mussatto SI, Dragone G, Morales MLV, Solenzal AIN (2004) Detoxification of sugarcane bagasse hemicellulosic hydrolyzate with ion exchange resins for xylitol production by calcium alginate-entrapped cells. Chem Technol Biotechnol 79:863–868

    Article  Google Scholar 

  51. Silva DDV, Mancilha IM, Silva SS (2007) Improvement of biotechnological xylitol production by glucose during cultive of Candida guilliermondii in sugarcane bagasse hydrolyzate. Braz Arch Biol Technol 50:207–215

    Article  Google Scholar 

  52. Cunha MAA, Converti A, Santos JC, Ferreira STS, Da Silva SS (2009) PVA hydrogel entrapped Candida guilliermondii for xylitol production from sugarcane hemicellulose hydrolyzate. Appl Biochem Biotechnol 157:527–537

    Article  Google Scholar 

  53. Sapcı B, Akpinar O, Bolukbasi U, Yilmaz L (2016) Evaluation of cotton stalk hydrolyzate for xylitol production. Prep Biochem Biotechnol 46:474–482

    Article  Google Scholar 

  54. Hernández-Pérez AF, Arruda PVD, Felip MDGDA (2016) Sugarcane straw as a feedstock for xylitol production by Candida guilliermondii FTI 20037. Braz J Microbiol 47:489–496

    Article  Google Scholar 

  55. Ghafar A, Yameen M, Aslam N, Jalal F, Noreen R, Munir B, Mahmood Z, Saleem S, Rafq N, Falak S, Tahir IM, Noman M, Farooq MU, Qasim S, Latif F (2017) Acidic and enzymatic saccharification of waste agricultural biomass for biotechnological production of xylitol. Chem Cent J 11:97

    Article  Google Scholar 

  56. Kim S (2019) Xylitol production from byproducts generated during sequential acid-/alkali-pretreatment of empty palm fruit bunch fiber by an adapted Candida tropicalis. Front Energy Res 7:72

    Article  Google Scholar 

  57. Zhang C, Qin J, Dai Y, Mua W, Zhang T (2019) Atmospheric and room temperature plasma (ARTP) mutagenesis enables xylitol over-production with yeast Candida tropicalis. J Biotechnol 296:7–13

    Article  Google Scholar 

  58. Cortivo PRD, Hickert LR, Rosa CA, Ayub MAZ (2020) Conversion of fermentable sugars from hydrolyzates of soybean and oat hulls into ethanol and xylitol by Spathaspora hagerdaliae UFMG-CM-Y303. Ind Crop Prod 146:112218

    Article  Google Scholar 

  59. Rahman NHA, Jahim JM, Abdul MMS, Rahman RA, Fuzi SFZ, Illias RM (2020) Immobilization of recombinant Escherichia coli on multi-walled carbon nanotubes for xylitol production. Enzym Microbial Technol 135:109495

    Article  Google Scholar 

  60. Raj K, Krishnan C (2020) Improved co-production of ethanol and xylitol from low-temperature aqueous ammonia pretreated sugarcane bagasse using two-stage high solids enzymatic hydrolysis and Candida tropicalis. Renew Energy 153:392–403

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Bharathidasan Institute of Technology (BIT) Campus, Anna University, Tiruchirappalli, India, for the technical support. The comments and valuable recommendations of anonymous reviewers and the Editor-in-Chief, Martin Kaltschmitt, are greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Anuradha Jabasingh.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOC 1359 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saravanan, P., Ramesh, S., Jaya, N. et al. Prospective evaluation of xylitol production using Dabaryomyces hansenii var hansenii, Pachysolen tannophilus, and Candida guillermondii with sustainable agricultural residues. Biomass Conv. Bioref. 13, 2813–2831 (2023). https://doi.org/10.1007/s13399-020-01221-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-020-01221-y

Keywords

Navigation