Skip to main content
Log in

Flow Dynamics of PTT and FENE-P Viscoelastic Fluids in Circular and Flat Ducts: An Analytical Study

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The main aim of this research work is to establish, under fully developed conditions, an analytical solution for viscoelastic fluids flow obeying the constitutive Phan–Thien–Tanner (PTT) and Finely Extensible Nonlinear Elastic-Peterlin (FENE-P) models. In fact, a unified formulation for laminar, stationary and fully developed flow in the cases of circular and flat ducts geometries is obtained for velocity profile involving PTT and FENE-P models. In this investigation, the effect of pressure gradient on velocity profile, shear stress, shear rate and shear viscosity is explored. Effects of pressure gradient and Weissenberg number on normal stress are also studied and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

A :

Constant

\( F \) :

Stress coefficient function of PTT model

\( f \) :

Fanning friction factor

\( G \) :

Dimensionless pressure gradient

\( L^{2} \) :

Extensibility parameter of the FENE-P model

\( H \) :

Half-flat height (m)

\( K \) :

Form factor

\( p \) :

Pressure (Pa)

\( R \) :

Half-circular height (m)

\( u \) :

Dimensional velocity (m/s)

\( U \) :

Dimensionless fluid velocity

\( U_{\text{N}} \) :

Dimensionless velocity of the Newtonian fluid

\( u_{\text{m}} \) :

Average fluid velocity (m/s)

\( u_{\text{Nm}} \) :

Average velocity of the Newtonian fluid (m/s)

\( x \) :

Coordinate in the axial direction (m)

\( y,r,j \) :

Coordinates in the vertical direction (m)

\( Y \) :

Dimensionless vertical coordinate

\( Z \) :

Stress coefficient function of FENE-P model

\( {\text{Re}} \) :

Reynolds number

Wi:

Weissenberg number

\( \dot{\gamma } \) :

Dimensionless shear rate

\( \dot{\gamma }^{*} \) :

Shear rate (s−1)

\( \delta \) :

Characteristic dimension of the duct (m)

\( \varepsilon \) :

Elongation parameter of the PTT model

\( \eta_{\text{p}} \) :

Polymer viscosity (Pa s)

λ :

Relaxation time (s)

\( \rho \) :

Fluid density (kg/m3)

\( \tau \) :

Dimensionless shear stress

\( \tau^{ *} \) :

Shear stress (Pa)

References

  1. Oliveira, P.J.; Pinho, F.T.: Analytical solution for fully developed channel and pipe flow of Phan-Thien–Tanner fluids. J. Fluid Mech. 387, 271–280 (1999)

    Article  MathSciNet  Google Scholar 

  2. Pinho, F.T.; Oliveira, P.T.: Analysis of forced convection in pipes and channels with the simplified Phan-Thien–Tanner fluid. Int. J. Heat Mass Transf. 43, 2273–2287 (2000)

    Article  Google Scholar 

  3. Oliveira, P.J.: An exact solution for tube and slit flow of a FENE-P fluid. Acta Mecanica 158, 157–167 (2002)

    Article  Google Scholar 

  4. Oliveira, P.J.; Coelho, P.M.; Pinho, F.T.: The Graetz problem with viscous dissipation for FENE-P fluids. J. Non Newton Fluid Mech. 121, 69–72 (2004)

    Article  Google Scholar 

  5. Cruz, D.O.A.; Pinho, F.T.: Fully-developed pipe and planar flows of multimode viscoelastic fluids. J. Non Newton Fluid Mech. 141, 85–98 (2007)

    Article  Google Scholar 

  6. Leteliera, M.F.; Siginer, D.A.: On the fully developed tube flow of a class of non-linear viscoelastic fluids. Int. J. Non Linear Mech. 40, 489–493 (2005)

    Google Scholar 

  7. Ferràs, L.L.; Nóbrega, J.M.; Pinho, F.T.: Analytical solutions for channel flows of Phan-Thien–Tanner and Giesekus fluids under slip. J. Non Newton. Fluid Mech. 171–172, 97–105 (2012)

    Article  Google Scholar 

  8. Matin, M.H.; Khan, W.A.: Electrokinetic effects on pressure driven flow of viscoelastic fluids in nanofluidic channels with Navier slip condition. J. Mol. Liq. 215, 472–480 (2016)

    Article  Google Scholar 

  9. Pinho, F.T.; Oliveira, P.J.: Axial annular flow of a nonlinear viscoelasticfluid-an analytical solution. J. Non Newton Fluid Mech. 93, 325–337 (2000)

    Article  Google Scholar 

  10. Yang, W.-J.; Yi, W.; Ren, X.-G.; Xu, L.-Y.; Xu, X.-H.; Yuan, X.-F.: Toward large scale parallel computer simulation of viscoelastic fluid flow: a study of benchmark flow problems. J. Non Newton Fluid Mech. 222, 82–95 (2015)

    Article  MathSciNet  Google Scholar 

  11. Esselaoui, D.; Ramadane, A.; Zine, A.M.: Decoupled approach for the problem of viscoelastic fluid of PTT model I: continuous stresses. Comput. Methods Appl. Mech. Eng. 190, 543–560 (2000)

    Article  MathSciNet  Google Scholar 

  12. Olagunju, D.O.: Local similarity solutions for boundary layer flow of a FENE-P fluid. Appl. Math. Comput. 173, 593–602 (2006)

    Article  MathSciNet  Google Scholar 

  13. Zhou, S.; Hou, L.: A weighted least-squares finite element method for Phan-Thien–Tanner viscoelastic fluid. J. Math. Anal. Appl. 436, 66–78 (2016)

    Article  MathSciNet  Google Scholar 

  14. Dhinakaran, S.; Afonso, A.M.; Alves, M.A.; Pinho, F.T.: Steady viscoelastic fluid flow between parallel plates under electro-osmotic forces: Phan-Thien–Tanner model. J. Colloid Interface Sci. 344, 513–520 (2010)

    Article  Google Scholar 

  15. Filali, A.; Khazzar, L.; Siginer, D.; Nemouchi, Z.: Graetz problem with non-linear viscoelastic fluids in non-circular tubes. Int. J. Thermal Sci. 61, 50–60 (2012)

    Article  Google Scholar 

  16. Norouzi, M.: Analytical solution for the convection of Phan-Thien–Tanner fluids in isothermal pipes. Int. J. Thermal Sci. 108, 165–173 (2016)

    Article  Google Scholar 

  17. Hashemabadi, S.H.; Etemad, S.G.; Thibault, J.; Golkar Naranji, M.R.: Analytical solution for dynamic pressurization of viscoelastic fluids. Int. J. Heat Fluid Flow 24, 137–144 (2003)

    Article  Google Scholar 

  18. Letelier, M.F.; Hinojosa, C.B.; Siginer, D.A.: Analytical solution of the Graetz problem for non-linear viscoelastic fluids in tubes of arbitrary cross-section. Int. J. Thermal Sci. 111, 369–378 (2017)

    Article  Google Scholar 

  19. Kostas, D.: Housiads, An exact analytical solution for viscoelastic fluids with pressure-dependent viscosity. J. Non Newton Fluid Mech. 223, 147–156 (2015)

    Article  MathSciNet  Google Scholar 

  20. Sadek, S.H.; Pinho, F.T.: Electro-osmotic oscillatory flow of viscoelastic fluids in a microchannel. J. Non Newton Fluid Mech. 266, 46–58 (2019)

    Article  MathSciNet  Google Scholar 

  21. Li, Y.-K.; Zhang, Z.-Y.Z.-N.; Qian, F.-C.L.; Joo, S.W.; Kulagina, L.V.: Numerical study on secondary flows of viscoelastic fluids in straight ducts: origin analysis and parametric effects. Comput. Fluids 152, 57–73 (2017)

    Article  MathSciNet  Google Scholar 

  22. Sarma, R.; Nath, A.J.; Konwar, T.; Mondal, P.K.; Wongwises, S.: Thermo-hydrodynamics of a viscoelastic fluid under asymmetrical heating. Int. J. Heat Mass Transf. 125, 515–524 (2018)

    Article  Google Scholar 

  23. Abro, K.A.; Atangana, A.: Role of non-integer order differentiations on the relaxation phenomena of viscoelastic fluid. Phys. Scr. 95, 035228 (2020)

    Article  Google Scholar 

  24. Bird, R.B.; Amstrong, R.C.; Hassager, O.: Dynamics of Polymeric Liquids, Fluid Mechanics, vol. 1, 2nd edn. Wiley, New York (1978)

    Google Scholar 

  25. Phan-Thien, N.; Tanner, R.I.: A new constitutive equation derived from network theory. J. Non Newton Fluid Mech. 2, 353–369 (1977)

    Article  Google Scholar 

  26. Bird, R.B.; Dotson, P.J.; Johnson, N.L.: Polymer solution rheology based on a finitely extensible bead-spring chain model. J. Non Newton Fluid Mech. 7(2–3), 213–235 (1980)

    Article  Google Scholar 

  27. Guilbeau, L.: History of the solution of the cubic equation. Math. News Lett. 5(4), 8–12 (1930)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed R. Eid.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Latreche, S., Sari, M.R., Kezzar, M. et al. Flow Dynamics of PTT and FENE-P Viscoelastic Fluids in Circular and Flat Ducts: An Analytical Study. Arab J Sci Eng 46, 2783–2792 (2021). https://doi.org/10.1007/s13369-020-05307-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-05307-7

Keywords

Navigation