Skip to main content
Log in

From Transcript to Tissue: Multiscale Modeling from Cell Signaling to Matrix Remodeling

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Tissue-level biomechanical properties and function derive from underlying cell signaling, which regulates mass deposition, organization, and removal. Here, we couple two existing modeling frameworks to capture associated multiscale interactions—one for vessel-level growth and remodeling and one for cell-level signaling—and illustrate utility by simulating aortic remodeling. At the vessel level, we employ a constrained mixture model describing turnover of individual wall constituents (elastin, intramural cells, and collagen), which has proven useful in predicting diverse adaptations as well as disease progression using phenomenological constitutive relations. Nevertheless, we now seek an improved mechanistic understanding of these processes; we replace phenomenological relations in the mixture model with a logic-based signaling model, which yields a system of ordinary differential equations predicting changes in collagen synthesis, matrix metalloproteinases, and cell proliferation in response to altered intramural stress, wall shear stress, and exogenous angiotensin II. This coupled approach promises improved understanding of the role of cell signaling in achieving tissue homeostasis and allows us to model feedback between vessel mechanics and cell signaling. We verify our model predictions against data from the hypertensive murine infrarenal abdominal aorta as well as results from validated phenomenological models, and consider effects of noisy signaling and heterogeneous cell populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Ambrosi, D., M. Ben Amar, C. J. Cyron, A. DeSimone, A. Goriely, J. D. Humphrey, and E. Kuhl. Growth and remodelling of living tissues: perspectives, challenges and opportunities. J. R. Soc. Interface 16(157):20190233, 2019.

    Article  Google Scholar 

  2. Aparício, P., M. S. Thompson, and P. N. Watton. A novel chemo-mechano-biological model of arterial tissue growth and remodelling. J. Biomech. 49(12):2321–2330, 2016.

    Article  Google Scholar 

  3. Ateshian, G. A., and T. Ricken. Multigenerational interstitial growth of biological tissues. Biomech. Model. Mechanobiol. 9(6):689–702, 2010.

    Article  Google Scholar 

  4. Bellini, C., J. Ferruzzi, S. Roccabianca, E. S. Di Martino, and J. D. Humphrey. A microstructurally motivated model of arterial wall mechanics with mechanobiological implications. Ann. Biomed. Eng. 42(3):488–502, 2014.

    Article  CAS  Google Scholar 

  5. Bersi, M. R., C. Bellini, J. Wu, K. R. C. Montaniel, D. G. Harrison, and J. D. Humphrey. Excessive adventitial remodeling leads to early aortic maladaptation in angiotensin-induced hypertension. Hypertension 67(5):890–896, 2016.

    Article  CAS  Google Scholar 

  6. Bersi, M. R., R. Khosravi, A. J. Wujciak, D. G. Harrison, and J. D. Humphrey. Differential cell-matrix mechanoadaptations and inflammation drive regional propensities to aortic fibrosis, aneurysm or dissection in hypertension. J. R. Soc. Interface 14(136):20170327, 2017.

    Article  Google Scholar 

  7. Cardamone, L., A. Valentin, J. F. Eberth, and J. D. Humphrey. Origin of axial prestretch and residual stress in arteries. Biomech. Model. Mechanobiol. 8(6):431, 2009.

    Article  CAS  Google Scholar 

  8. Chuong, C. -J., and Y. -C. Fung. Residual stress in arteries. In: Frontiers in Biomechanics. Berlin: Springer, pp. 117–129, 1986.

  9. Cyron, C. J., and J. D. Humphrey. Growth and remodeling of load-bearing biological soft tissues. Meccanica 52(3):645–664, 2017.

    Article  CAS  Google Scholar 

  10. Drews, J. D., V. K. Pepper, C. A. Best, J. M. Szafron, J. P. Cheatham, A. R. Yates, K. N. Hor, J. C. Zbinden, Y.-C. Chang, G. J. M. Mirhaidari, et al. Spontaneous reversal of stenosis in tissue-engineered vascular grafts. Sci. Transl. Med. 12(537):eaax6919, 2020.

    Article  CAS  Google Scholar 

  11. Estrada, A. C., K. Yoshida, J. J. Saucerman, and J. W. Holmes. A multiscale model of cardiac concentric hypertrophy incorporating both mechanical and hormonal drivers of growth. Biomech. Model. Mechanobiol. 2020.

  12. Hayenga, H. N., B. C. Thorne, S. M. Peirce, and J. D. Humphrey. Ensuring congruency in multiscale modeling: towards linking agent based and continuum biomechanical models of arterial adaptation. Ann. Biomed. Eng. 39(11):2669, 2011.

    Article  Google Scholar 

  13. Humphrey, J. D., E. R. Dufresne, and M. A. Schwartz. Mechanotransduction and extracellular matrix homeostasis. Nat. Rev. Mol. Cell Biol. 15(12):802–812, 2014.

    Article  CAS  Google Scholar 

  14. Humphrey, J. D., and K. R. Rajagopal. A constrained mixture model for growth and remodeling of soft tissues. Math. Models Methods Appl. Sci. 12(03):407–430, 2002.

    Article  Google Scholar 

  15. Irons, L., and J. D. Humphrey. Cell signaling model for arterial mechanobiology. PLoS Comput. Biol. 16(8):e1008161, 2020.

    Article  CAS  Google Scholar 

  16. Kraeutler, M. J., A. R. Soltis, and J. J. Saucerman. Modeling cardiac β-adrenergic signaling with normalized-Hill differential equations: comparison with a biochemical model. BMC Syst. Biol. 4(1):157, 2010.

    Article  Google Scholar 

  17. Kuhl, E. Growing matter: a review of growth in living systems. J. Mech. Behav. Biomed. Mater. 29:529–543, 2014.

    Article  Google Scholar 

  18. Latorre, M., M. R. Bersi, and J. D. Humphrey. Computational modeling predicts immuno-mechanical mechanisms of maladaptive aortic remodeling in hypertension. Int. J. Eng. Sci. 141:35–46, 2019.

    Article  Google Scholar 

  19. Latorre, M., and J. D. Humphrey. A mechanobiologically equilibrated constrained mixture model for growth and remodeling of soft tissues. J. Appl. Math. Mech. 98(12):2048–2071, 2018.

    Google Scholar 

  20. Latorre, M., and J. D. Humphrey. Modeling mechano-driven and immuno-mediated aortic maladaptation in hypertension. Biomech. Model. Mechanobiol. 17(5):1497–1511, 2018.

    Article  Google Scholar 

  21. Latorre, M., and J. D. Humphrey. Fast, rate-independent, finite element implementation of a 3D constrained mixture model of soft tissue growth and remodeling. Comput. Methods Appl. Mech. Eng. 368:113156, 2020.

    Article  Google Scholar 

  22. Marino, M., G. Pontrelli, G. Vairo, and P. Wriggers. A chemo-mechano-biological formulation for the effects of biochemical alterations on arterial mechanics: the role of molecular transport and multiscale tissue remodelling. J. R. Soc. Interface 14(136):20170615, 2017.

    Article  Google Scholar 

  23. Rikard, S. M., T. L. Athey, A. Nelson, S. L. M. Christiansen, J.-J. Lee, J. W. Holmes, S. M. Peirce, and J. J. Saucerman. Multiscale coupling of an agent-based model of tissue fibrosis and a logic-based model of intracellular signaling. Front. Physiol. 10:1481, 2019.

    Article  Google Scholar 

  24. Saucerman, J. J., P. M. Tan, K. S. Buchholz, A. D. McCulloch, and J. H. Omens. Mechanical regulation of gene expression in cardiac myocytes and fibroblasts. Nat. Rev. Cardiol. 16(6):361–378, 2019.

    Article  Google Scholar 

  25. Sree, V. D., and A. B. Tepole. Computational systems mechanobiology of growth and remodeling: integration of tissue mechanics and cell regulatory network dynamics. Curr. Opin. Biomed. Eng. 2020.

  26. Tan, P. M., K. S. Buchholz, J. H. Omens, A. D. McCulloch, and J. J. Saucerman. Predictive model identifies key network regulators of cardiomyocyte mechano-signaling. PLoS Comput. Biol. 13(11):e1005854, 2017.

    Article  Google Scholar 

  27. Valentin, A., and J. D. Humphrey. Evaluation of fundamental hypotheses underlying constrained mixture models of arterial growth and remodelling. Philos. Trans. R. Soc. A: Math. , Phys. Eng. Sci. 367(1902):3585–3606, 2009.

    Article  CAS  Google Scholar 

  28. Van Doren, S. R. Matrix metalloproteinase interactions with collagen and elastin. Matrix Biol. 44:224–231, 2015.

    Article  Google Scholar 

  29. Zeigler, A. C., W. J. Richardson, J. W. Holmes, and J. J. Saucerman. A computational model of cardiac fibroblast signaling predicts context-dependent drivers of myofibroblast differentiation. J. Mol. Cell. Cardiol. 94:72–81, 2016.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants from the US NIH (R01 HL105297, P01 HL134605, R01 HL139796, U01 HL142518, R01 HL146723).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda Irons.

Additional information

Communicated by Stefan M. Duma.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (PDF 1715 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Irons, L., Latorre, M. & Humphrey, J.D. From Transcript to Tissue: Multiscale Modeling from Cell Signaling to Matrix Remodeling. Ann Biomed Eng 49, 1701–1715 (2021). https://doi.org/10.1007/s10439-020-02713-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-020-02713-8

Keywords

Navigation