Skip to main content
Log in

An original determination of the maximum phase shift range obtained for an array of N coupled oscillators

  • Mixed Signal Letter
  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

This paper presents an original approach, using a harmonic balance optimization method, allowing to predict the maximum phase shift range that can be practically obtained for an array of N coupled oscillators. Indeed, unlike what is predicted by the theory, the proposed analysis allows to show that the maximum value of the phase shift decreases by increasing the number N of coupled oscillators in the array. Hence, this method allows to find an empirical limit of the phase shift obtained between two adjacent oscillators which tends to ± 180°/N. The results obtained with the proposed method are compared with the measurement results of an array made of two and four coupled voltage controlled oscillators (VCOs) implemented in the QUBiC4X 0.25 µm BiCMOS SiGe:C process of NXP semiconductors. These measurement results confirmed that the maximum measured phase shift range is close to ± 180°/2 and ± 180°/4 for arrays made of two and four coupled VCOs respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

References

  1. Nogi, S., Lin, J., & Itoh, T. (1993). Mode analysis and stabilization of a spatial power combining array with strongly coupled oscillators. IEEE Transactions on Microwave Theory and Techniques, 41(10), 1827–1837.

    Article  Google Scholar 

  2. Liao, P., & York, R. A. (1993). A new phase-shifterless beam-scanning technique using arrays of coupled oscillators. IEEE Transactions on Microwave Theory and Techniques, 41(10), 1810–1815.

    Article  Google Scholar 

  3. Health, T. (2004). Beam steering of nonlinear oscillator arrays through manipulation of coupling phases. IEEE Transactions on Antennas and Propagation, 52(7), 1833–1842.

    Article  Google Scholar 

  4. Tohmé, N. Y., Paillot, J. M., Cordeau, D., & Coirault, P. (2008). Analysis of the frequency locking region of coupled oscillators applied to 1-D antenna arrays. In European microwave conference (pp. 1334–1337).

  5. Toon, S., Banai, A., & Farzaneh, F. (2011). Evaluation of beam steering in circular planar array of coupled microwave oscillators. International Journal of RF and Microwave Computer-Aided Engineering, 21(4), 383–391.

    Article  Google Scholar 

  6. Cordeau, D., & Paillot, J. M. (2013). A beam-scanning architecture using a 6-GHz array of four coupled differential VCOs for automotive communications. In Proceedings of the international conference on electronics, computers and artificial intelligence (pp. 1–7).

  7. Hamid, U., Qamar, R. A., & Waqas, K. (2014). Performance comparison of time-domain frequency-domain beamforming techniques sensor array processing. In International bhurban conference on applied sciences and technology (pp. 379–385).

  8. York, R. A., Liao, P., & Lynch, J. J. (1994). Oscillator array dynamics with broadband N-port coupling networks. IEEE Transactions on Microwave Theory and Techniques, 42(11), 2040–2045.

    Article  Google Scholar 

  9. York, R. A. (1993). Nonlinear analysis of phase relationships in quasi-optical oscillator arrays. IEEE Transactions on Microwave Theory and Techniques, 41(10), 1799–1809.

    Article  Google Scholar 

  10. Mellouli, D., Cordeau, D., Mnif, H., Paillot, J. M., & Loulou, M. (2015). A low phase noise fully monolithic 6 GHz differential coupled NMOS LC-VCO. Frequenz Journal of RF-Engineering and Telecommunications, 70(1–2), 33–38.

    Google Scholar 

  11. Mellouli, D., Cordeau, D., Mnif, H., Paillot, J. M., & Loulou, M. (2013). Design and implementation of a 6-GHz array of four differential VCOs coupled through a resistive network. Analog Integrated Circuits and Signal Processing, 76(2), 179–193.

    Article  Google Scholar 

  12. Cordeau, D., Mellouli, D., Paillot, J. M., Mnif, H., & Loulou, M. (2015). A fully monolithic 5.8 GHz low phase noise coupled VCO network for phased-array systems. Analog Integrated Circuits and Signal Processing, 82(1), 335–340.

    Article  Google Scholar 

  13. Aoun, D., & Linkens, D. A. (1990). Computer-aided mode analysis of coupled nonlinear oscillators. IEEE Transactions Circuits Systems, 37(2), 273–280.

    Article  Google Scholar 

  14. Kuroki, D., Endo, T., & Mori, S. (1998). An analysis of oscillation modes of four completely coupled oscillators via integral manifolds and its experimental confirmation. Electronics and Communications in Japan III, 8(9), 20–28.

    Google Scholar 

  15. Lanza, V., Corinto, F., Gilli, M., & Civalleri, P. P. (2007). Analysis of nonlinear oscillatory network dynamics via time-varying amplitude and phase variables. International Journal of Circuit Theory and Applications, 35(6), 623–644.

    Article  Google Scholar 

  16. Buonomo, A., & Lo Schiavo, A. (2009). The effect of parameter mismatches on the output waveform of an LC-VCO. International Journal Circuit Theory Applications, 38(5), 487–501.

    MATH  Google Scholar 

  17. Maffezzoni, P., Bahr, B., Zhang, Z., & Daniel, L. (2015). Analysis and design of weakly coupled LC oscillator arrays based on phase-domain macromodels. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 34(1), 77–85.

    Article  Google Scholar 

  18. Collado, A., Ramirez, F., Suárez, A., & Pascual, J. P. (2004). Harmonic balance analysis and synthesis of coupled-oscillator arrays. IEEE Microwave Wireless Components Letters, 14(5), 192–194.

    Article  Google Scholar 

  19. Suárez, A., Collado, A., & Ramírez, F. (2005).Harmonic-Balance techniques for the design of coupled-oscillator systems in both unforced and injection-locked operation. In IEEE MTT-S International Microwave Symposium Digest, (pp. 887–890).

  20. Georiagiadis, A., Collado, A., & Suarez, A. (2006). New techniques for the analysis and design of coupled-oscillator systems. IEEE Transactions on Microwave Theory and Techniques, 54(11), 3864–3877.

    Article  Google Scholar 

  21. Suárez, A., Ramírez, F., & Sancho, S. (2011). Stability and noise analysis of coupled-oscillator systems. IEEE Transactions on Microwave Theory and Techniques, 59(4), 1032–1046.

    Article  Google Scholar 

  22. Suárez, A., Ramírez, F., & Sancho, S. (2014). Coupled-oscillator systems: efficient simulation with harmonic-balance based oscillator models. In International Conference on Numerical Electromagnetic Modeling and Optimization for RF, Microwave, and Terahertz Applications (NEMO), (pp. 1–4).

  23. Ramírez, F., Suárez, A., & Sancho, S. (2015) Coupled –oscillator system with two stable phase-shift intervals. In European microwave integrated circuits conference, (pp. 452–455).

  24. Hernández, S., & Suárez, A. (2019). Systematic methodology for the global stability analysis of nonlinear circuits. IEEE Transactions on Microwave Theory and Techniques, 67(1), 3–15.

    Article  Google Scholar 

  25. Chang, H. C., Shapiro, E. S., & York, R. A. (1997). Influence of the oscillator equivalent circuit on the stable modes of parallel-coupled oscillators. IEEE Transactions on Microwave Theory and Techniques, 45(8), 1232–1239.

    Article  Google Scholar 

  26. Lynch, J. J., & York, R. A. (2001). Synchronization of oscillators coupled through narrow-band networks. IEEE Transactions on Microwave Theory and Techniques, 49(2), 237–249.

    Article  Google Scholar 

  27. Cordeau, D., Ionita, M., Paillot, J. M., & Iordache, M. (2013). New formulation of the equations describing the locked states of two van der pol oscillators coupled through a broadband network—application to the design of two differential coupled VCOs. Frequenz Journal of RF-Engineering and Telecommunications, 67(7–8), 237–247.

    Google Scholar 

  28. Gupta, A. K., & Buckwalter, J. F. (2014). A self-steering receiver array using jointly coupled oscillators and phased-locked loops. IEEE Transactions on Microwave Theory and Techniques, 62(3), 631–644.

    Article  Google Scholar 

  29. Buckwalter, J. F., Babakhani, A., Komijani, A., & Hajimiri, A. (2006). An integrated sub harmonic coupled-oscillator scheme for a 60-GHz phased array transmitter. IEEE Transactions on Microwave Theory and Techniques, 54(12), 4271–4280.

    Article  Google Scholar 

  30. Kijsanayotin, T., Li, J., & Buckwalter, J. F. (2017). A 70-GHz LO phase-shifting bidirectional frontend using linear coupled oscillators. IEEE Transactions on Microwave Theory and Techniques, 65(3), 892–904.

    Article  Google Scholar 

  31. Yan, S. H., & Chu, T. H. (2008). A beam-steering antenna array using injection locked coupled oscillators with self-tuning of oscillator free-running frequencies. IEEE Transactions on Antennas and Propagation, 56(9), 2920–2928.

    Article  Google Scholar 

  32. Cao, X., & York, R. A. (1995). Coupled-oscillator scanning technique for receiver applications. In IEEE Antennas and Propagation Society International Symposium (pp. 1311–1314).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaouthar Djemel.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Djemel, K., Aloulou, R., Cordeau, D. et al. An original determination of the maximum phase shift range obtained for an array of N coupled oscillators. Analog Integr Circ Sig Process 106, 683–696 (2021). https://doi.org/10.1007/s10470-020-01791-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-020-01791-x

Keywords

Navigation