1932

Abstract

Placing mechanical devices into fast-moving tidal streams to generate clean and predictable electricity is a developing technology. This review covers the fundamental fluid mechanics of this application, which is important for understanding how such devices work and how they interact with the tidal stream resource. We focus on how tidal stream turbines and energy generation are modeled analytically, numerically, and experimentally. Owing to the nature of the problem, our review is split into different scales—from turbine to array and regional—and we examine each in turn.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-010719-060207
2021-01-05
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/fluid/53/1/annurev-fluid-010719-060207.html?itemId=/content/journals/10.1146/annurev-fluid-010719-060207&mimeType=html&fmt=ahah

Literature Cited

  1. Adcock TAA, Draper S, Houlsby GT, Borthwick AGL, Serhadloğlu S 2013. The available power from tidal stream turbines in the Pentland Firth. Proc. R. Soc. A 469:215720130072
    [Google Scholar]
  2. Adcock TAA, Draper S, Houlsby GT, Borthwick AGL, Serhadloğlu S 2014. Tidal stream power in the Pentland Firth–long-term variability, multiple constituents and capacity factor. Proc. Inst. Mech. Eng. A 228:8854–61
    [Google Scholar]
  3. Afgan I, McNaughton J, Rolfo S, Apsley DD, Stallard T, Stansby PK 2013. Turbulent flow and loading on a tidal stream turbine by LES and RANS. Int. J. Heat Fluid Flow 43:96–108
    [Google Scholar]
  4. Ahmed U, Apsley DD, Afgan I, Stallard T, Stansby PK 2017. Fluctuating loads on a tidal turbine due to velocity shear and turbulence: comparison of CFD with field data. Renew. Energy 112:235–46
    [Google Scholar]
  5. Arbic BK, Garrett C. 2010. A coupled oscillator model of shelf and ocean tides. Cont. Shelf Res. 30:6564–74
    [Google Scholar]
  6. Batten WMJ, Bahaj AS, Molland AF, Chaplin JR 2006. Hydrodynamics of marine current turbines. Renew. Energy 31:249–56
    [Google Scholar]
  7. Belloni CSK, Willden RHJ, Houlsby GT 2013. A numerical analysis of bidirectional ducted tidal turbines in yawed flow. Mar. Technol. Soc. J. 47:423–35
    [Google Scholar]
  8. bin Osman MH, Willden RHJ, Vogel CR 2019. The effects of surge motion on floating horizontal axis tidal turbines. Proceedings of the 13th European Wave and Tidal Energy Conference (EWTEC 2019) Pap. 1295 Southampton, UK: Tech. Comm. Eur. Wave Tidal Energy Conf.
    [Google Scholar]
  9. Blanchfield J, Garrett C, Wild P, Rowe A 2008. The extractable power from a channel linking a bay to the open ocean. Proc. Inst. Mech. Eng. 222:3289–97
    [Google Scholar]
  10. Bonar PAJ, Chen L, Schnabl AM, Venugopal V, Borthwick AGL, Adcock TAA 2019. On the arrangement of tidal turbines in rough and oscillatory channel flow. J. Fluid Mech. 865:790–810
    [Google Scholar]
  11. Burton T, Jenkins N, Sharpe D, Bossanyi E 2011. Wind Energy Handbook Chichester, UK: Wiley. , 2nd. ed.
  12. Cao B, Willden RHJ, Vogel CR 2018. Effects of blockage and freestream turbulence intensity on tidal rotor design and performance. Proceedings of the 3rd International Conference on Renewable Energies Offshore (RENEW 2018) CG Soares 127–36 Boca Raton, FL: CRC
    [Google Scholar]
  13. Chamorro LP, Hill C, Neary VS, Gunawan B, Arndt REA, Sotiropolous F 2015. Effects of energetic coherent motions on the power and wake of an axial-flow turbine. Phys. Fluids 27:055104
    [Google Scholar]
  14. Chen L, Bonar PAJ, Vogel CR, Adcock TAA 2019. A note on the tuning of tidal turbines in channels. J. Ocean Eng. Mar. Energy 5:185–98
    [Google Scholar]
  15. Chen Y, Lin B, Lin J, Wang S 2017. Experimental study of wake structure behind a horizontal axis tidal stream turbine. App. Energy 196:82–96
    [Google Scholar]
  16. Cooke SC, Willden RHJ, Byrne BW 2016. The potential of cross-stream aligned sub-arrays to increase tidal turbine efficiency. Renew. Energy 97:284–92
    [Google Scholar]
  17. Cooke SC, Willden RHJ, Byrne BW, Stallard T, Olczak A 2015. Experimental investigation of tidal turbine partial array theory using porous discs. Proceedings of the 11th European Wave and Tidal Energy Conference (EWTEC 2015) Pap. 09D2-5 Southampton, UK: Tech. Comm. Eur. Wave Tidal Energy Conf.
    [Google Scholar]
  18. Corke TC, Thomas FO. 2015. Dynamic stall in pitching airfoils: aerodynamic damping and compressibility effects. Annu. Rev. Fluid Mech. 47:479–505
    [Google Scholar]
  19. Creed MJ, Draper S, Nishino T, Borthwick AGL 2017. Flow through a very porous obstacle in a shallow channel. Proc. R. Soc. A 473:220020160672
    [Google Scholar]
  20. Culley DM, Funke SW, Kramer SC, Piggott MD 2016. Integration of cost modelling within the micro-siting design optimisation of tidal turbine arrays. Renew. Energy 85:215–27
    [Google Scholar]
  21. Cummins PF. 2013. The extractable power from a split tidal channel: an equivalent circuit analysis. Renew. Energy 50:395–401
    [Google Scholar]
  22. De Dominicis M, O'Hara Murray R, Wolf J 2017. Multi-scale ocean response to a large tidal stream turbine array. Renew. Energy 114:1160–79
    [Google Scholar]
  23. Divett T, Vennell R, Stevens C 2013. Optimization of multiple turbine arrays in a channel with tidally reversing flow by numerical modelling with adaptive mesh. Philos. Trans. R. Soc. A 371:198520120251
    [Google Scholar]
  24. Draper S, Adcock TAA, Borthwick AGL, Houlsby GT 2014. An electrical analogy for the Pentland Firth tidal stream power resource. Proc. R. Soc. A 470:216120130207
    [Google Scholar]
  25. Draper S, Houlsby GT, Oldfield MLG, Borthwick AGL 2010. Modelling tidal energy extraction in a depth-averaged coastal domain. IET Renew. Power Gen. 4:6545–54
    [Google Scholar]
  26. Draper S, Nishino T. 2014. Centred and staggered arrangements of tidal turbines. J. Fluid Mech. 739:72–93
    [Google Scholar]
  27. Draper S, Stallard T, Stansby P, Way S, Adcock T 2013. Laboratory scale experiments and preliminary modelling to investigate basin scale tidal stream energy extraction. Proceedings of the 10th European Wave and Tidal Energy Conference (EWTEC 2013) P Frigaard, JP Kofoed, AS Bahaj, L Bergdahl, A Clément et al. Pap. 890 Southampton, UK: Tech. Comm. Eur. Wave Tidal Energy Conf.
    [Google Scholar]
  28. EMEC (Eur. Mar. Energy Cent.). 2009. Assessment of tidal energy resource Tech. Pap., Eur. Mar. Energy Cent. Stromness, UK:
  29. Funke SW, Farrell PE, Piggott MD 2014. Tidal turbine array optimisation using the adjoint approach. Renew. Energy 63:658–73
    [Google Scholar]
  30. Garrett C, Cummins P. 2005. The power potential of tidal currents in channels. Proc. R. Soc. A 461:20602563–72
    [Google Scholar]
  31. Garrett C, Cummins P. 2007. The efficiency of a turbine in a tidal channel. J. Fluid Mech. 588:243–51
    [Google Scholar]
  32. Garrett C, Cummins P. 2008. Limits to tidal current power. Renew. Energy 33:112485–90
    [Google Scholar]
  33. Garrett C, Cummins P. 2013. Maximum power from a turbine farm in shallow water. J. Fluid Mech. 714:634–43
    [Google Scholar]
  34. Garrett C, Greenberg D. 1977. Predicting changes in tidal regime: the open boundary problem. J. Phys. Oceanogr. 7:2171–81
    [Google Scholar]
  35. Glauert H. 1935. Aerodynamic Theory Berlin: Springer
  36. Godin G. 1970. The resolution of tidal constituents. Int. Hydrogr. Rev. 47:2133–44
    [Google Scholar]
  37. Greaves D, Iglesias G. 2018. Wave and Tidal Energy Chichester, UK: Wiley
  38. Greenwood C, Vogler A, Venugopal V 2019. On the variation of turbulence in a high-velocity tidal channel. Energies 12:4672
    [Google Scholar]
  39. Grogan DM, Leen SB, Kennedy CR, Ó Brádaigh CM 2013. Design of composite tidal turbine blades. Renew. Energy 57:151–62
    [Google Scholar]
  40. Hansen MOL, Johansen J. 2004. Tip studies using CFD and comparison with tip loss models. Wind Energy 7:343–56
    [Google Scholar]
  41. Hendershott M, Munk W. 1970. Tides. Annu. Rev. Fluid Mech. 2:205–24
    [Google Scholar]
  42. Horwitz RM, Hay AE. 2017. Turbulence dissipation rates from horizontal profiles at mid-depth in fast tidal flows. Renew. Energy 114:283–96
    [Google Scholar]
  43. Hunter W, Nishino T, Willden RHJ 2015. Investigation of tidal turbine array tuning using 3D Reynolds-averaged Navier–Stokes simulations. Int. J. Mar. Energy 10:39–51
    [Google Scholar]
  44. Karsten RH, McMillan JM, Lickley MJ, Haynes RD 2008. Assessment of tidal current energy in the Minas Passage, Bay of Fundy. Proc. Inst. Mech. Eng. 222:5493–507
    [Google Scholar]
  45. Lewis M, McNaughton J, Márquez-Dominguez C, Todeschini G, Togneri M et al. 2019. Power variability of tidal-stream energy and implications for electricity supply. Energy 183:1061–74
    [Google Scholar]
  46. McNaughton J, Cao B, Vogel CR, Willden RHJ 2019. Model scale testing of multi-rotor arrays designed to exploit constructive interference effects. Proceedings of the 13th European Wave and Tidal Energy Conference (EWTEC 2019) Pap. 1338 Southampton, UK: Tech. Comm. Eur. Wave Tidal Energy Conf.
    [Google Scholar]
  47. Milne IA, Day AH, Sharma RN, Flay RGJ 2015. Blade loading on tidal turbines for uniform unsteady flow. Renew. Energy 77:338–50
    [Google Scholar]
  48. Milne IA, Day AH, Sharma RN, Flay RGJ 2016. The characterisation of the hydrodynamic loads on tidal turbines due to turbulence. Renew. Sustain. Energy Rev. 56:851–64
    [Google Scholar]
  49. Mycek P, Benoît G, Germain G, Pinon G, Rivoalen E 2014a. Experimental study of the tubulence intensity effects on marine current turbines behaviour. Part I: one single turbine. Renew. Energy 66:729–46
    [Google Scholar]
  50. Mycek P, Gaurier B, Germain G, Pinon G, Rivoalen E 2014b. Experimental study of the tubulence intensity effects on marine current turbines behaviour. Part II: two interacting turbines. Renew. Energy 68:876–92
    [Google Scholar]
  51. Neill SP, Angeloudis A, Robins PE, Walkington I, Ward SL et al. 2018. Tidal range energy resource and optimization—past perspectives and future challenges. Renew. Energy 127:763–78
    [Google Scholar]
  52. Neill SP, Hashemi MR. 2018. Fundamentals of Ocean Renewable Energy: Generating Electricity from the Sea London: Academic
  53. Neill SP, Hashemi MR, Lewis MJ 2016. Tidal energy leasing and tidal phasing. Renew. Energy 85:580–87
    [Google Scholar]
  54. Ning A, Dykes K. 2014. Understanding the benefits and limitations of increasing maximum rotor tip speed for utility scale wind turbines. J. Phys. Conf. Ser. 524:012087
    [Google Scholar]
  55. Nishino T, Willden RHJ. 2012. The efficiency of an array of tidal turbines partially blocking a wide channel. J. Fluid Mech. 708:596–606
    [Google Scholar]
  56. Nishino T, Willden RHJ. 2013. Two-scale dynamics of flow past a partial cross-stream array of tidal turbines. J. Fluid Mech. 730:220–44
    [Google Scholar]
  57. Norris JV, Droniou E. 2007. Update on EMEC activities, resource description, and characterisation of wave-induced velocities in a tidal flow. Proceedings of the 7th European Wave and Tidal Energy Conference (EWTEC 2007) Southampton, UK: Tech. Comm. Eur. Wave Tidal Energy Conf.
    [Google Scholar]
  58. O'Hara Murray R, Gallego A 2017. A modelling study of the tidal stream resource of the Pentland Firth, Scotland. Renew. Energy 102:326–40
    [Google Scholar]
  59. Perez-Campos E, Nishino T. 2015. Numerical validation of the two-scale actuator disc theory for marine turbine arrays. Proceedings of the 11th European Wave and Tidal Energy Conference (EWTEC 2015) Pap. 09D2-3 Southampton, UK: Tech. Comm. Eur. Wave Tidal Energy Conf.
    [Google Scholar]
  60. Polagye BL, Epler J, Thomson J 2010. Limits to the predictability of tidal current energy. Proceedings of the 2010 Oceans Conference New York: IEEE https://doi.org/10.1109/OCEANS.2010.5664588
    [Crossref] [Google Scholar]
  61. Pugh DT. 1987. Tides, Surges and Mean Sea-Level Chichester, UK: Wiley
  62. Rainey RCT. 2009. The optimum position for a tidal power barrage in the Severn estuary. J. Fluid Mech. 636:497–507
    [Google Scholar]
  63. Ren Y, Liu B, Zhang T, Fang Q 2017. Design and hydrodynamic analysis of horizontal axis tidal stream turbines with winglets. Ocean Eng 144:374–83
    [Google Scholar]
  64. Ross H, Polagye B. 2020. An experimental assessment of analytical blockage corrections for turbines. Renew. Energy 152:1328–41
    [Google Scholar]
  65. Rourke FO, Boyle F, Reynolds A 2010. Tidal energy update 2009. Appl. Energy 87:2398–409
    [Google Scholar]
  66. Scarlett GT, Sellar B, van den Bremer T, Viola IM 2019. Unsteady hydrodynamics of a full-scale tidal turbine operating in large wave conditions. Renew. Energy 143:199–213
    [Google Scholar]
  67. Schluntz J, Willden RHJ. 2015. The effect of blockage on tidal turbine rotor design and performance. Renew. Energy 81:432–41
    [Google Scholar]
  68. Sequeira CL, Miller RJ. 2014. Unsteady gust response of tidal stream turbines. Proceedings of the 2014 Oceans Conference New York: IEEE https://doi.org/10.1109/OCEANS.2010.5664588
    [Crossref] [Google Scholar]
  69. Shen WZ, Mikkelsen R, Sørenson JN, Bak C 2005. Tip loss corrections for wind turbine computations. Wind Energy 8:457–75
    [Google Scholar]
  70. Shives M, Crawford C. 2016. Adapted two-equation turbulence closures for actuator disk RANS simulations of wind & tidal turbine wakes. Renew. Energy 92:279–92
    [Google Scholar]
  71. Sørensen JN. 2011. Aerodynamic aspects of wind energy conversion. Annu. Rev. Fluid Mech. 43:427–48
    [Google Scholar]
  72. Stallard T, Feng T, Stansby PK 2015. Experimental study of the mean wake of a tidal stream rotor in a shallow turbulent flow. J. Fluids Struct. 54:235–46
    [Google Scholar]
  73. Stansby PK. 2006. Limitations of depth-averaged modeling for shallow wakes. J. Hydraul. Eng. 132:7737–40
    [Google Scholar]
  74. Stansby P, Stallard T. 2016. Fast optimisation of tidal stream turbine positions for power generation in small arrays with low blockage based on superposition of self-similar far-wake velocity deficit profiles. Renew. Energy 92:366–75
    [Google Scholar]
  75. Stevens RJAM, Meneveau C. 2017. Flow structure and turbulence in wind farms. Annu. Rev. Fluid Mech. 49:311–39
    [Google Scholar]
  76. Stock-Williams C, Parkinson S, Gunn K 2013. An investigation of uncertainty in yield prediction for tidal current farms. Proceedings of the 10th European Wave and Tidal Energy Conference (EWTEC 2013) P Frigaard, JP Kofoed, AS Bahaj, L Bergdahl, A Clément et al. Pap. 794 Southampton, UK: Tech. Comm. Eur. Wave Tidal Energy Conf.
    [Google Scholar]
  77. Thiébot J, Guillou N, Guillou S, Good A, Lewis M 2020a. Wake field study of tidal turbines under realistic flow conditions. Renew. Energy 151:1196–208
    [Google Scholar]
  78. Thiébot J, Guillou S, Droniou E 2020b. Influence of the 18.6-year lunar nodal cycle on the tidal resource of the Alderney Race, France. Appl. Ocean Res. 97:102107
    [Google Scholar]
  79. Thomson J, Polagye B, Durgesh V, Richmond MC 2012. Measurements of turbulence at two tidal energy sites in Puget Sound, WA. IEEE J. Ocean. Eng. 37:3363–74
    [Google Scholar]
  80. van Kuik GAM. 2007. The Lanchester–Betz–Joukowsky limit. Wind Energy 10:3289–91
    [Google Scholar]
  81. Vennell R. 2010. Tuning turbines in a tidal channel. J. Fluid Mech. 663:253–67
    [Google Scholar]
  82. Vennell R. 2013. Exceeding the Betz limit with tidal turbines. Renew. Energy 55:277–85
    [Google Scholar]
  83. Vennell R. 2016. An optimal tuning strategy for tidal turbines. Proc. R. Soc. A 472:219520160047
    [Google Scholar]
  84. Vennell R, Adcock TAA. 2014. Energy storage inherent in large tidal turbine farms. Proc. R. Soc. A 470:216620130580
    [Google Scholar]
  85. Vennell R, Funke SW, Draper S, Stevens C, Divett T 2015. Designing large arrays of tidal turbines: a synthesis and review. Renew. Sustain. Energy Rev. 41:454–72
    [Google Scholar]
  86. Vogel CR, Houlsby GT, Willden RHJ 2016. Effect of free surface deformation on the extractable power of a finite width turbine array. Renew. Energy 88:317–24
    [Google Scholar]
  87. Vogel CR, Willden RHJ. 2017. Multi-rotor tidal stream turbine fence performance and operation. Int. J. Mar. Energy 19:198–206
    [Google Scholar]
  88. Vogel CR, Willden RHJ. 2018. Designing multi-rotor tidal turbine fences. Int. J. Mar. Energy 1:161–70
    [Google Scholar]
  89. Vogel CR, Willden RHJ, Houlsby GT 2017. Power available from a depth-averaged simulation of a tidal turbine array. Renew. Energy 114:513–24
    [Google Scholar]
  90. Vogel CR, Willden RHJ, Houlsby GT 2018. Blade element momentum theory for a tidal turbine. Ocean Eng 169:215–26
    [Google Scholar]
  91. Vogel CR, Willden RHJ, Houlsby GT 2019. Tidal stream turbine power capping in a head-driven tidal channel. Renew. Energy 136:491–99
    [Google Scholar]
  92. Wang T, Adcock TAA. 2019. Combined power and thrust capping in the design of tidal turbine farms. Renew. Energy 133:1247–56
    [Google Scholar]
  93. Whelan JI, Graham JMR, Peiró J 2009. Inertia effects on horizontal axis tidal stream turbines. Proceedings of the 8th European Wave and Tidal Energy Conference (EWTEC 2009) Pap. 225 Southampton, UK: Tech. Comm. Eur. Wave Tidal Energy Conf.
    [Google Scholar]
  94. Wimshurst A, Vogel CR, Willden RHJ 2018. Cavitation limits on tidal turbine performance. Ocean Eng 152:223–33
    [Google Scholar]
  95. Wimshurst A, Willden RHJ. 2017. Analysis of a tip correction factor for horizontal axis turbines. Wind Energy 20:1515–28
    [Google Scholar]
  96. Wimshurst A, Willden RHJ. 2018. Computational observations of the tip loss mechanism experienced by horizontal axis rotors. Wind Energy 21:544–57
    [Google Scholar]
  97. Young AM, Smyth ASM, Bajpai V, Augarde RF, Farman JR, Sequeira CL 2019. Improving tidal turbine efficiency using winglets. Proceedings of the 13th European Wave and Tidal Energy Conference (EWTEC 2019) Pap. 1635 Southampton, UK: Tech. Comm. Eur. Wave Tidal Energy Conf.
    [Google Scholar]
  98. Zhang L, Wang S, Sheng Q, Jing F, Ma Y 2015. The effects of surge motion of the floating platform on hydrodynamics performance of horizontal axis tidal current turbine. Renew. Energy 74:796–802
    [Google Scholar]
  99. Zilic de Arcos F, Vogel CR, Willden RHJ 2019. Hydrodynamic modelling of flexible tidal turbine blades. Proceedings of the 13th European Wave and Tidal Energy Conference (EWTEC 2019) Pap. 1587 Southampton, UK: Tech. Comm. Eur. Wave Tidal Energy Conf.
    [Google Scholar]
/content/journals/10.1146/annurev-fluid-010719-060207
Loading
/content/journals/10.1146/annurev-fluid-010719-060207
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error