Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-23T10:49:03.768Z Has data issue: false hasContentIssue false

Luiz F. G. Labouriau and the dawn of seed science in Brazil

Published online by Cambridge University Press:  07 January 2021

L. Felipe Daibes*
Affiliation:
Universidade Estadual Paulista (UNESP), I.B, Campus de Rio Claro, São Paulo, Brazil
Fabian Borghetti
Affiliation:
Departamento de Botânica, Laboratório de Termobiologia, Universidade de Brasília (UnB), Campus Darcy Ribeiro, Distrito Federal, Brazil
Alfredo G. Ferreira
Affiliation:
Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
*
Author for Correspondence: L. F. Daibes, E-mail: luipedaibes@gmail.com

Abstract

Luiz Fernando Gouvêa Labouriau (1921–1996) was a pioneer plant biologist who made significant contributions to plant physiology, mostly by bringing seed germination into a thermobiological context. His studies have set the foundations of seed science in Brazil and keep inspiring researchers until now.

Type
Short Communication
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alvarado, V and Bradford, KJ (2002) A hydrothermal time model explains the cardinal temperatures for seed germination. Plant, Cell and Environment 25, 10611069. doi:10.1046/j.1365-3040.2002.00894.x.CrossRefGoogle Scholar
Aravind, J, Vimala Devi, S, Radhamani, J, Jacob, SR and Srinivasan, K (2020) germinationmetrics: seed germination indices and curve fitting. R package version 0.1.4.9000. Available at: https://github.com/aravind-j/germinationmetrics.Google Scholar
Bewley, JD, Bradford, KJ, Hilhorst, HWM and Nonogaki, H (2013) Seeds: physiology of development, germination and dormancy (3rd edn). New York, NY, Springer-Verlag.CrossRefGoogle Scholar
Borghetti, F and Ferreira, AG (2004) Interpretação de resultados de germinação, pp. 209222 in Ferreira, AG; Borghetti, F (Eds.) Germinação: do básico ao aplicado. Porto Alegre, Artmed.Google Scholar
Borghetti, F and Labouriau, LFG (1994) Inhibition of phytochrome by deuterium oxide in the germination of akenes of Cosmos sulphureus Cav. Ciência e Cultura 46, 177181.Google Scholar
Cardoso, VJM (2009) Uma análise termobiológica da germinação. Naturalia 32, 3552.Google Scholar
Cardoso, VJM (2010) An adapted thermal-gradient block for the germination of photoblastic seeds. Brazilian Archives of Biology and Technology 53, 12671277. doi:10.1590/S1516-89132010000600002.CrossRefGoogle Scholar
Covell, S, Ellis, RH, Roberts, EH and Summerfield, RJ (1986) The influence of temperature on seed germination rate in grain legumes: I. A comparison of chickpea, lentil, soyabean and cowpea at constant temperatures. Journal of Experimental Botany 37, 705715. doi:10.1093/jxb/37.5.705.CrossRefGoogle Scholar
Dau, L and Labouriau, LFG (1974) Temperature control of seed germination in Pereskia aculeata Mill. Anais da Academia Brasileira de Ciências 46, 311322.Google Scholar
Ferreira, AG and Borghetti, F (orgs) (2004) Germinação: do básico ao aplicado. Porto Alegre, Artmed.Google Scholar
Garcia-Huidobro, J, Monteith, JL and Squire, GR (1982) Time, temperature and germination of pearl millet (Pennisetum typhoides S. & H.): I. Constant temperature. Journal of Experimental Botany 33, 288296. doi:10.1093/jxb/33.2.288.CrossRefGoogle Scholar
Grubb, PJ (1977) The maintenance of species-richness in plant communities: the importance of the regeneration niche. Biological Reviews 52, 107145. doi:10.1111/j.1469-185X.1977.tb01347.x.CrossRefGoogle Scholar
Handro, W (1996) Luiz Fernando Gouvêa Labouriau (1921–1996). Acta Botanica Brasilica 10, 193197. doi:10.1590/S0102-33061996000100013.CrossRefGoogle Scholar
Jiménez-Alfaro, B, Silveira, FAO, Fidelis, A, Poschlod, P and Commander, LE (2016) Seed germination traits can contribute better to plant community ecology. Journal of Vegetation Science 27, 637645. doi:10.1111/jvs.12375.CrossRefGoogle Scholar
Kotowski, F (1926) Temperature relations to germination of vegetable seeds. Proceedings of the American Society for Horticultural Science 23, 176184.Google Scholar
Labouriau, LFG (1958) Studies on the initiation of sporangia in ferns. PhD thesis, California Institute of Technology.Google Scholar
Labouriau, LFG (1970) On the physiology of seed germination in Vicia graminea Sm. I. Anais da Academia Brasileira de Ciências 42, 236262.Google Scholar
Labouriau, LFG (1972) On the physiology of seed germination in Vicia graminea Sm. II. An analysis of the temperature dependence of the seed germination rate. Anais da Academia Brasileira de Ciências 44, 236262.Google Scholar
Labouriau, LFG (1977a) A thermal-gradient block for germination experiments. Revista Brasileira de Biologia 37, 295305.Google Scholar
Labouriau, LFG (1977b) Shift of the maximum temperature of germination of Vicia graminea seeds following imbibition of deuterium oxide. Journal of Thermal Biology 2, 111114. doi:10.1016/0306-4565(77)90014-6.CrossRefGoogle Scholar
Labouriau, LFG (1978) Seed germination as a thermobiological problem. Radiation and Environmental Biophysics 15, 345366. doi:10.1007/BF01323460.CrossRefGoogle ScholarPubMed
Labouriau, LFG (1980) Effects of deuterium oxide on the lower temperature limit of seed germination. Journal of Thermal Biology 5, 113117. doi:10.1016/0306-4565(80)90009-1.CrossRefGoogle Scholar
Labouriau, LFG (1983) A germinação das sementes. Secretaria-Geral da Organização dos Estados Americanos, Washington, DC.Google Scholar
Labouriau, LFG (1990) O interesse do estudo das sementes. Estudos Avançados 4, 228242. doi:10.1590/S0103-40141990000200012.CrossRefGoogle Scholar
Labouriau, LFG and Agudo, M (1987) On the physiology of seed germination in Salvia hispanica L. I. Temperature effects. Anais da Academia Brasileira de Ciências 59, 3756.Google Scholar
Labouriau, LFG and Cavalcanti, RB (1996) Um bloco de gradiente térmico de fácil construção, para experimentos termobiológicos. Revista Brasileira de Fisiologia Vegetal 8, 149156.Google Scholar
Labouriau, LFG and Labouriau, IS (1991) The Arrhenius plot of a physiological rate process is never linear. Ciência e Cultura 43, 363369.Google Scholar
Labouriau, LFG and Osborn, JH (1984) Temperature dependence of the germination of tomato seeds. Journal of Thermal Biology 9, 285294. doi:10.1016/0306-4565(84)90010-X.CrossRefGoogle Scholar
Labouriau, LFG and Pacheco, A (1978) On the frequency of isothermal germination in seeds of Dolichos biflorus L. Plant and Cell Physiology 19, 507512. doi:10.1093/oxfordjournals.pcp.a075620.CrossRefGoogle Scholar
Labouriau, LFG and Valadares, MEB (1976) On the germination of seeds of Calotropis procera. Anais da Academia Brasileira de Ciências 48, 263284.Google Scholar
Labouriau, LFG, Válio, IFM, Salgado-Labouriau, ML and Handro, W (1963) Nota sobre a germinação de sementes de plantas de cerrados em condições naturais. Revista Brasileira de Biologia 23, 227237.Google Scholar
Larson, JE and Funk, JL (2016) Regeneration: an overlooked aspect of trait-based plant community assembly models. Journal of Ecology 104, 12841298. doi:10.1111/1365-2745.12613.CrossRefGoogle Scholar
Maguire, JD (1962) Speed of germination – aid in selection and evaluation for seedling emergence and vigor. Crop Science 2, 176177. doi:10.2135/cropsci1962.0011183X000200020033x.CrossRefGoogle Scholar
Marques, AR, Atman, APF, Silveira, FAO and Lemos-Filho, JP (2014) Are seed germination and ecological breadth associated? Testing the regeneration niche hypothesis with bromeliads in a heterogeneous neotropical montane vegetation. Plant Ecology 215, 517529. doi:10.1007/s11258-014-0320-4.CrossRefGoogle Scholar
Ranal, MA and Santana, DG (2006) How and why to measure the germination process? Revista Brasileira de Botânica 29, 111. doi:10.1590/S0100-84042006000100002.Google Scholar
Ranieri, BD, Pezzini, FF, Garcia, QS, Chautems, A and França, MGC (2012) Testing the regeneration niche hypothesis with Gesneriaceae (tribe Sinningiae) in Brazil: implications for the conservation of rare species. Austral Ecology 37, 125133. doi:10.1111/j.1442-9993.2011.02254.x.CrossRefGoogle Scholar
Ribeiro, GVT, Teixido, AL, Barbosa, NPU and Silveira, FAO (2016) Assessing bias and knowledge gaps on seed ecology research: implications for conservation agenda and policy. Ecological Applications 26, 20332043. doi:10.1890/15-1852.1.CrossRefGoogle ScholarPubMed
Saatkamp, A, Cochrane, A, Commander, L, Guja, LK, Jimenez-Alfaro, B, Larson, J, Nicotra, A, Poschlod, P, Silveira, FAO, Cross, AT, Dalziell, EL, Dickie, J, Erickson, TE, Fidelis, A, Fuchs, A, Golos, PJ, Hope, M, Lewandrowski, W, Merritt, DJ, Miller, BP, Miller, RG, Offord, CA, Ooi, MKJ, Satyanti, A, Sommerville, KD, Tangney, R, Tomlinson, S, Turner, S and Walck, JL (2019) A research agenda for seed-trait functional ecology. New Phytologist 221, 17641775. doi:10.1111/nph.15502.CrossRefGoogle ScholarPubMed
Santana, DG and Ranal, MA (2004) Análise da germinação: um enfoque estatístico. Brasília, Editora UnB.Google Scholar
Santos, DL and Cardoso, VJM (2001) Thermal-biological aspects on the seed germination of Cucumis anguria L.: influence of the seed coat. Revista Brasileira de Botânica 24, 435440. doi:10.1590/S0100-84042001000400009.Google Scholar